참고문헌
- Kim, S.W., Lee, T.H. Effect of Samchulkunbi-tang on the gastric secretion and intestinal transport in the rat. J Korean Oriental Medical Pathology 3: 84-90, 1988.
- Seo, C.S., Lee, M.Y., Kim, J.H., Lee, J.A., Shin, H.K. Simultaneous Determination of Seven Compounds by HPLC-PDA and Cytotoxicity of Samchulkunbi-tang Kor J Herbology 25(3):65-71, 2010.
- Szurszewsik, J.H. Electrical basis for gastrointestinal motility; in Prostaglandins and the Gastrointestinal Tract, Johnson, L. R. (ed.), p 383, Raven Press, New York, 1987.
- Huizinga, J.D., Thuneberg, L., Kluppel, M., Malysz, J., Mikkelsen, H.B., Bernstein, A. W/kit gene required for intestinal pacemaker activity. Nature 373: 347-352, 1995. https://doi.org/10.1038/373347a0
- Langton, P., Ward, S.M., Carl, A., Nerell, M.A., Sanders, K.M. Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon. Proc Natl Acad Sci USA 86: 7280-7284, 1989. https://doi.org/10.1073/pnas.86.18.7280
- Ordog, T., Ward, S.M., Sanders, K.M. Interstitial cells of Cajal generate electrical slow waves in the murine stomach. J Physiol 518: 257-269, 1999. https://doi.org/10.1111/j.1469-7793.1999.0257r.x
- Sanders, K.M. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111: 492-515, 1996. https://doi.org/10.1053/gast.1996.v111.pm8690216
- Ward, S.M., Burns, A.J., Torihashi, S., Sanders, K.M. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 480: 91-102, 1994. https://doi.org/10.1113/jphysiol.1994.sp020343
- Goto, K., Matsuoka, S., Noma, A. Two types of spontaneous depolarizations in the interstitial cells freshly prepared from the murine small intestine. J Physiol 559: 411-422, 2004. https://doi.org/10.1113/jphysiol.2004.063875
- Torihashi, S., Ward, S.M., Sanders, K.M. Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology 112: 144-155, 1997. https://doi.org/10.1016/S0016-5085(97)70229-4
- Ward, S.M., Ordog, T., Koh, S.D., Baker, S.A., Jun, J.Y., Amberg, G., Monaghan, K., Sanders, K.M. Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J Physiol 525: 355-361, 2000. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00355.x
-
Koh, S.D., Jun, J.Y., Kim, T.W., Sanders, K.M. A Ca(
$^{2+}$ )-inhibited non-selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal. J Physiol 540: 803-814, 2002. https://doi.org/10.1113/jphysiol.2001.014639 - Sanders, K.M., Koh, S.D., Ordog, T., Ward, S.M. Ionic conductances involved in generation and propagation of electrical slow waves in phasic gastrointestinal muscles. Neurogastroenterol. Motil 16: 100-105, 2004. https://doi.org/10.1111/j.1743-3150.2004.00483.x
- Kuriyama, H., Kitamura, K., Itoh, T., Inoue, R. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol Rev 78: 811-920, 1998. https://doi.org/10.1152/physrev.1998.78.3.811
- Sanders, K.M. G protein-coupled receptors in gastrointestinal physiology. IV. Neural regulation of gastrointestinal smooth muscle. Am J Physiol 275: G1-7, 1998. https://doi.org/10.1152/ajpcell.1998.275.3.Ca1
- Sakamoto, T., Unno, T., Matsuyama, H., Uchiyama, M., Hattori, M., Nishimura, M., Komori, S. Characterization of muscarinic receptor-mediated cationic currents in longitudinal smooth muscle cells of mouse small intestine. J Pharmacol Sci 100: 215-226, 2006. https://doi.org/10.1254/jphs.FP0050973
- Koh, S.D., Sanders, K.M., Ward, S.M. Spontaneous electrical rhythmicity in cultured interstitial cells of Cajal from the murine small intestine. J Physiol 513: 203-213, 1998. https://doi.org/10.1111/j.1469-7793.1998.203by.x
- Thomsen, L., Robinson, T.L., Lee, J.C., Farraway, L.A., Hughes, M.J., Andrews, D.W., Huizinga, J.D. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med 4: 848-851, 1998. https://doi.org/10.1038/nm0798-848
- Wilmsen, P.K., Spada, D.S., Salvador, M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J Agric Food Chem 53: 4757-4761, 2005. https://doi.org/10.1021/jf0502000
- SchröSfelbauer, B., Raffetseder, J., Hauner, M., Wolkerstorfer, A., Ernst, W., Szolar, O.H. Glycyrrhizin, the main active compound in liquorice, attenuates pro-inflammatory responses by interfering with membrane-dependent receptor signalling. Biochem J 421: 473-482, 2009. https://doi.org/10.1042/BJ20082416
- Yeh, C.C., Kao, S.J., Lin, C.C., Wang, S.D., Liu, C.J., Kao, S.T. The immunomodulation of endotoxin-induced acute lung injury by hesperidin in vivo and in vitro. Life Sci 80: 1821-1831, 2007. https://doi.org/10.1016/j.lfs.2007.01.052
- Yang, Y., Bian, G.X., Lu, Q.J. Neuroprotection and neumntrophism effects of liquiritin on primary cultured hippocampal cells. Zhongguo Zhongyao Zazhi 33: 931-935, 2007.
- Ishida, H., Takamatsu, M., Tsuji, K., Kosuge, T. Studies on active substances in herbs used for Oketsu ("stagnant blood") in Chinese medicine. VI. On the anticoagulative principle in Paeoniae Radix. Chem Pharm Bull 35: 849-852, 1987. https://doi.org/10.1248/cpb.35.849
- Kimura, M., Kimura, I., Nojima, H. Depolarizing neuromuscular blocking action induced by electropharmacological coupling in the combined effect of paeoniflorin and glycyrrhizin. Jpn J Pharmacol 37: 395-399, 1985. https://doi.org/10.1254/jjp.37.395
- Liang, J., Zhou, A., Chen, M., Xu, S. Negatively regulatory effects of paeoniflorin on immune cells. Eur J Pharmacol 183: 901-902, 1990. https://doi.org/10.1016/0014-2999(90)92731-W
- Hsu, F.L., Lai, C.S., Cheng, J.T. Antihyperglycemic effects of paeoniflorin and 8-debenzoyl paeoniflorin, glucosides from the root. Planta Med 63: 323-325, 1997. https://doi.org/10.1055/s-2006-957692
- Kim, D.H., Bae, E.A., Han, M.J. Anti-helicobacter pylori activity of the metabolites of poncirin from Poncirus trifoliata by human intestinal bacteria. Biol Pharm Bull 22: 422-424, 1999. https://doi.org/10.1248/bpb.22.422
-
Kim, B., Han, A.R., Park, E.Y., Kim, J.Y., Cho, W., Lee, J., Seo, E.K., Lee, K.T. Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-
${\kappa}B$ inactivation in RAW264.7 macrophage cells. Biol Pharm Bull 30: 2345-2351, 2007. https://doi.org/10.1248/bpb.30.2345 - Lee, C.H., Jeong, T.S., Choi, Y.K., Hyun, B.H., Oh, G.T., Kim, E.H., Kim, J.R., Han, J.I., Bok, S.H. Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem Biophys Res Commun 284: 681-688, 2001. https://doi.org/10.1006/bbrc.2001.5001