DOI QR코드

DOI QR Code

Modulation of Human Cardiac Progenitors via Hypoxia-ERK Circuit Improves their Functional Bioactivities

  • Jung, Seok Yun (Laboratory of Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University) ;
  • Choi, Sung Hyun (Laboratory of Cardiovascular Disease, Division of Cardiology, School of Medicine, The Catholic University of Korea) ;
  • Yoo, So Young (Laboratory of Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University) ;
  • Baek, Sang Hong (Laboratory of Cardiovascular Disease, Division of Cardiology, School of Medicine, The Catholic University of Korea) ;
  • Kwon, Sang Mo (Laboratory of Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University)
  • Received : 2013.02.20
  • Accepted : 2013.04.12
  • Published : 2013.05.31

Abstract

Recent accumulating studies have reported that hypoxic preconditioning during ex vivo expansion enhanced the self-renewal or differentiation of various stem cells and provide an important strategy for the adequate modulation of oxygen in culture conditions, which might increase the functional bioactivity of these cells for cardiac regeneration. In this study, we proposed a novel priming protocol to increase the functional bioactivity of cardiac progenitor cells (CPCs) for the treatment of cardiac regeneration. Firstly, patient-derived c-$kit^+$ CPCs isolated from the atrium of human hearts by enzymatic digestion and secondly, pivotal target molecules identified their differentiation into specific cell lineages. We observed that hCPCs, in response to hypoxia, strongly activated ERK phosphorylation in ex vivo culture conditioning. Interestingly, pre-treatment with an ERK inhibitor, U0126, significantly enhanced cellular proliferation and tubular formation capacities of CPCs. Furthermore, we observed that hCPCs efficiently maintained the expression of the c-kit, a typical stem cell marker of CPCs, under both hypoxic conditioning and ERK inhibition. We also show that hCPCs, after preconditioning of both hypoxic and ERK inhibition, are capable of differentiating into smooth muscle cells (SMCs) and cardiomyocytes (CMs), but not endothelial cells (ECs), as demonstrated by the strong expression of ${\alpha}$-SMA, Nkx2.5, and cTnT, respectively. From our results, we conclude that the functional bioactivity of patient-derived hCPCs and their ability to differentiate into SMCs and CMs can be efficiently increased under specifically defined culture conditions such as short-term hypoxic preconditioning and ERK inhibition.

Keywords

References

  1. Bearzi, C., Rota, M., Hosoda, T., Tillmanns, J., Nascimbene, A., De Angelis, A., Yasuzawa-Amano, S., Trofi mova, I., Siggins, R. W., Lecapitaine, N., Cascapera, S., Beltrami, A. P., D'Alessandro, D. A., Zias, E., Quaini, F., Urbanek, K., Michler, R. E., Bolli, R., Kajstura, J., Leri, A. and Anversa, P. (2007) Human cardiac stem cells. Proc. Natl. Acad. Sci. U.S.A. 104, 14068-14073. https://doi.org/10.1073/pnas.0706760104
  2. Brighton, C. T., Lorich, D. G., Kupcha, R., Reilly, T. M., Jones, A. R. and Woodbury, R. A. 2nd (1992) The pericyte as a possible osteoblast progenitor cell. Clin. Orthop. Relat. Res. 275, 287-299.
  3. Cao, F., Lin, S., Xie, X., Ray, P., Patel, M., Zhang, X., Drukker, M., Dylla, S. J., Connolly, A. J., Chen, X., Weissman, I. L., Gambhir, S. S. and Wu, J. C. (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113, 1005-1014. https://doi.org/10.1161/CIRCULATIONAHA.105.588954
  4. Cesselli, D., Beltrami, A. P., D'Aurizio, F., Marcon, P., Bergamin, N., Toffoletto, B., Pandolfi , M., Puppato, E., Marino, L., Signore, S., Livi, U., Verardo, R., Piazza, S., Marchionni, L., Fiorini, C., Schneider, C., Hosoda, T., Rota, M., Kajstura, J., Anversa, P., Beltrami, C. A. and Leri, A. (2011) Effects of age and heart failure on human cardiac stem cell function. Am. J. Pathol. 179, 349-366. https://doi.org/10.1016/j.ajpath.2011.03.036
  5. Chen, H. L., Pistollato, F., Hoeppner, D. J., Ni, H. T., McKay, R. D. and Panchision, D. M. (2007) Oxygen tension regulates survival and fate of mouse central nervous system precursors at multiple levels. Stem Cells 25, 2291-2301. https://doi.org/10.1634/stemcells.2006-0609
  6. Conde de la Rosa, L., Schoemaker, M. H., Vrenken, T. E., Buist-Homan, M., Havinga, R., Jansen, P. L. and Moshage, H. (2006) Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases. J. Hepatol. 44, 918-929. https://doi.org/10.1016/j.jhep.2005.07.034
  7. D'Amario, D., Cabral-Da-Silva, M. C., Zheng, H., Fiorini, C., Goichberg, P., Steadman, E., Ferreira-Martins, J., Sanada, F., Piccoli, M., Cappetta, D., D'Alessandro, D. A., Michler, R. E., Hosoda, T., Anastasia, L., Rota, M., Leri, A., Anversa, P. and Kajstura, J. (2011) Insulin-like growth factor-1 receptor identifi es a pool of human cardiac stem cells with superior therapeutic potential for myocardial regeneration. Circ. Res. 108, 1467-1481. https://doi.org/10.1161/CIRCRESAHA.111.240648
  8. D'Ippolito, G., Diabira, S., Howard, G. A., Roos, B. A. and Schiller, P. C. (2006) Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39, 513-522. https://doi.org/10.1016/j.bone.2006.02.061
  9. Ezashi, T., Das, P. and Roberts, R. M. (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc. Natl. Acad. Sci. U. S.A. 102, 4783-4788. https://doi.org/10.1073/pnas.0501283102
  10. Galli, D., Innocenzi, A., Staszewsky, L., Zanetta, L., Sampaolesi, M., Bai, A., Martinoli, E., Carlo, E., Balconi, G., Fiordaliso, F., Chimenti, S., Cusella, G., Dejana, E., Cossu, G. and Latini, R. (2005) Mesoangioblasts, vessel-associated multipotent stem cells, repair the infarcted heart by multiple cellular mechanisms: a comparison with bone marrow progenitors, fi broblasts, and endothelial cells. Arterioscler. Thromb. Vasc. Biol. 25, 692-697. https://doi.org/10.1161/01.ATV.0000156402.52029.ce
  11. Goichberg, P., Bai, Y., D'Amario, D., Ferreira-Martins, J., Fiorini, C., Zheng, H., Signore, S., del Monte, F., Ottolenghi, S., D'Alessandro, D. A., Michler, R. E., Hosoda, T., Anversa, P., Kajstura, J., Rota, M. and Leri, A. (2011) The ephrin A1-EphA2 system promotes cardiac stem cell migration after infarction. Circ. Res. 108, 1071-1083. https://doi.org/10.1161/CIRCRESAHA.110.239459
  12. Horie, N., So, K., Moriya, T., Kitagawa, N., Tsutsumi, K., Nagata, I. and Shinohara, K. (2008) Effects of oxygen concentration on the proliferation and differentiation of mouse neural stem cells in vitro. Cell. Mol. Neurobiol. 28, 833-845. https://doi.org/10.1007/s10571-007-9237-y
  13. Hung, S. P., Ho, J. H., Shih, Y. R., Lo, T. and Lee, O. K. (2012) Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells. J. Orthop. Res. 30, 260-266. https://doi.org/10.1002/jor.21517
  14. Iwasaki, H., Kawamoto, A., Ishikawa, M., Oyamada, A., Nakamori, S., Nishimura, H., Sadamoto, K., Horii, M., Matsumoto, T., Murasawa, S., Shibata, T., Suehiro, S. and Asahara, T. (2006) Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation 113, 1311-1325. https://doi.org/10.1161/CIRCULATIONAHA.105.541268
  15. Jimenez, L. A., Zanella, C., Fung, H., Janssen, Y. M., Vacek, P., Charland, C., Goldberg, J. and Mossman, B. T. (1997) Role of extracellular signal-regulated protein kinases in apoptosis by asbestos and H2O2. Am. J. Physiol. 273, L1029-1035.
  16. Kawamoto, A., Iwasaki, H., Kusano, K., Murayama, T., Oyamada, A., Silver, M., Hulbert, C., Gavin, M., Hanley, A., Ma, H., Kearney, M., Zak, V., Asahara, T. and Losordo, D. W. (2006) CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation 114, 2163-2169. https://doi.org/10.1161/CIRCULATIONAHA.106.644518
  17. Kawamoto, A., Tkebuchava, T., Yamaguchi, J., Nishimura, H., Yoon, Y. S., Milliken, C., Uchida, S., Masuo, O., Iwaguro, H., Ma, H., Hanley, A., Silver, M., Kearney, M., Losordo, D. W., Isner, J. M. and Asahara, T. (2003) Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107, 461-468. https://doi.org/10.1161/01.CIR.0000046450.89986.50
  18. Kofoed, H., Sjontoft, E., Siemssen, S. O. and Olesen, H. P. (1985) Bone marrow circulation after osteotomy. Blood fl ow, pO2, pCO2, and pressure studied in dogs. Acta Orthop. Scand. 56, 400-403. https://doi.org/10.3109/17453678508994357
  19. Koh, G. Y., Soonpaa, M. H., Klug, M. G., Pride, H. P., Cooper, B. J., Zipes, D. P. and Field, L. J. (1995) Stable fetal cardiomyocyte grafts in the hearts of dystrophic mice and dogs. J. Clin. Invest. 96, 2034-2042. https://doi.org/10.1172/JCI118251
  20. Lee, W. C., Choi, C. H., Cha, S. H., Oh, H. L. and Kim, Y. K. (2005) Role of ERK in hydrogen peroxide-induced cell death of human glioma cells. Neurochem. Res. 30, 263-270. https://doi.org/10.1007/s11064-005-2449-y
  21. Lennon, D. P., Edmison, J. M. and Caplan, A. I. (2001) Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J. Cell. Physiol. 187, 345-355. https://doi.org/10.1002/jcp.1081
  22. Li, R. K., Jia, Z. Q., Weisel, R. D., Merante, F. and Mickle, D. A. (1999) Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J. Mol. Cell. Cardiol. 31, 513-522. https://doi.org/10.1006/jmcc.1998.0882
  23. Li, T. S., Cheng, K., Malliaras, K., Matsushita, N., Sun, B., Marban, L., Zhang, Y. and Marban, E. (2011) Expansion of human cardiac stem cells in physiological oxygen improves cell production effi ciency and potency for myocardial repair. Cardiovasc. Res. 89, 157-165. https://doi.org/10.1093/cvr/cvq251
  24. Linke, A., Muller, P., Nurzynska, D., Casarsa, C., Torella, D., Nascimbene, A., Castaldo, C., Cascapera, S., Bohm, M., Quaini, F., Urbanek, K., Leri, A., Hintze, T. H., Kajstura, J. and Anversa, P. (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc. Natl. Acad. Sci. U.S.A 102, 8966-8971. https://doi.org/10.1073/pnas.0502678102
  25. Markway, B. D., Tan, G. K., Brooke, G., Hudson, J. E., Cooper-White, J. J. and Doran, M. R. (2010) Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures. Cell Transplant. 19, 29-42. https://doi.org/10.3727/096368909X478560
  26. McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Wong, E. W., Chang, F., Lehmann, B., Terrian, D. M., Milella, M., Tafuri, A., Stivala, F., Libra, M., Basecke, J., Evangelisti, C., Martelli, A. M. and Franklin, R. A. (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta 1773, 1263-1284. https://doi.org/10.1016/j.bbamcr.2006.10.001
  27. Murry, C. E., Wiseman, R. W., Schwartz, S. M. and Hauschka, S. D. (1996) Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Invest. 98, 2512-2523. https://doi.org/10.1172/JCI119070
  28. Ong, L. L., Li, W., Oldigs, J. K., Kaminski, A., Gerstmayer, B., Piechaczek, C., Wagner, W., Li, R. K., Ma, N. and Steinhoff, G. (2010) Hypoxic/normoxic preconditioning increases endothelial differentiation potential of human bone marrow CD133+ cells. Tissue Eng. Part C Methods 16, 1069-1081. https://doi.org/10.1089/ten.tec.2009.0641
  29. Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., Nadal-Ginard, B., Bodine, D. M., Leri, A. and Anversa, P. (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. U.S.A. 98, 10344-10349. https://doi.org/10.1073/pnas.181177898
  30. Qian, Q., Qian, H., Zhang, X., Zhu, W., Yan, Y., Ye, S., Peng, X., Li, W., Xu, Z., Sun, L. and Xu, W. (2012) 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem Cells Dev. 21, 67-75. https://doi.org/10.1089/scd.2010.0519
  31. Shaul, Y. D. and Seger, R. (2007) The MEK/ERK cascade: from signaling specifi city to diverse functions. Biochim. Biophys. Acta 1773, 1213-1226. https://doi.org/10.1016/j.bbamcr.2006.10.005
  32. Short, M., Nemenoff, R. A., Zawada, W. M., Stenmark, K. R. and Das, M. (2004) Hypoxia induces differentiation of pulmonary artery adventitial fi broblasts into myofi broblasts. Am. J. Physiol. Cell Physiol. 286, C416-425. https://doi.org/10.1152/ajpcell.00169.2003
  33. Soonpaa, M. H., Koh, G. Y., Klug, M. G. and Field, L. J. (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264, 98-101. https://doi.org/10.1126/science.8140423
  34. Sturzu, A. C. and Wu, S. M. (2011) Developmental and regenerative biology of multipotent cardiovascular progenitor cells. Circ. Res. 108, 353-364. https://doi.org/10.1161/CIRCRESAHA.110.227066
  35. Tang, J., Wang, J., Kong, X., Yang, J., Guo, L., Zheng, F., Zhang, L., Huang, Y. and Wan, Y. (2009) Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Exp. Cell Res. 315, 3521-3531. https://doi.org/10.1016/j.yexcr.2009.09.026
  36. Tang, J. M., Wang, J. N., Zhang, L., Zheng, F., Yang, J. Y., Kong, X., Guo, L. Y., Chen, L., Huang, Y. Z., Wan, Y. and Chen, S. Y. (2011) VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc. Res. 91, 402-411. https://doi.org/10.1093/cvr/cvr053
  37. Taylor, D. A., Atkins, B. Z., Hungspreugs, P., Jones, T. R., Reedy, M.C., Hutcheson, K. A., Glower, D. D. and Kraus, W. E. (1998) Regeneratingfunctional myocardium: improved performance afterskeletal myoblast transplantation. Nat. Med. 4, 929-933. https://doi.org/10.1038/nm0898-929
  38. Tuncay, O. C., Ho, D. and Barker, M. K. (1994) Oxygen tension regulates osteoblast function. Am. J. Orthod. Dentofacial. Orthop. 105, 457-463. https://doi.org/10.1016/S0889-5406(94)70006-0
  39. Urbich, C., Heeschen, C., Aicher, A., Sasaki, K., Bruhl, T., Farhadi, M. R., Vajkoczy, P., Hofmann, W. K., Peters, C., Pennacchio, L. A., Abolmaali, N. D., Chavakis, E., Reinheckel, T., Zeiher, A. M. and Dimmeler, S. (2005) Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat. Med. 11, 206-213. https://doi.org/10.1038/nm1182
  40. Volkmer, E., Kallukalam, B. C., Maertz, J., Otto, S., Drosse, I., Polzer, H., Bocker, W., Stengele, M., Docheva, D., Mutschler, W. and Schieker, M. (2010) Hypoxic preconditioning of human mesenchymal stem cells overcomes hypoxia-induced inhibition of osteogenic differentiation. Tissue Eng. Part A 16, 153-164. https://doi.org/10.1089/ten.tea.2009.0021
  41. Yan, F., Yao, Y., Chen, L., Li, Y., Sheng, Z. and Ma, G. (2012) Hypoxic preconditioning improves survival of cardiac progenitor cells: role of stromal cell derived factor-1alpha-CXCR4 axis. PLoS One 7, e37948. https://doi.org/10.1371/journal.pone.0037948

Cited by

  1. Hypoxia induces FoxO3a-mediated dysfunction of blood–brain barrier vol.450, pp.4, 2014, https://doi.org/10.1016/j.bbrc.2014.07.055
  2. Hypoxic Stress Decreases c-Myc Protein Stability in Cardiac Progenitor Cells Inducing Quiescence and Compromising Their Proliferative and Vasculogenic Potential vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-09813-x
  3. Oxygen cycling to improve survival of stem cells for myocardial repair: A review vol.153, 2016, https://doi.org/10.1016/j.lfs.2016.04.011
  4. Stem Cell Factor Is a Potent Endothelial Permeability Factor vol.34, pp.7, 2013, https://doi.org/10.1161/atvbaha.114.303575
  5. Study of the mechanism underlying therapeutic effect of Compound Longmaining on myocardial infarction using a network pharmacology-based approach vol.118, pp.None, 2013, https://doi.org/10.1016/j.biopha.2019.109234
  6. Yuzu and Hesperidin Ameliorate Blood-Brain Barrier Disruption during Hypoxia via Antioxidant Activity vol.9, pp.9, 2013, https://doi.org/10.3390/antiox9090843
  7. Aβ1-40-Induced Platelet Adhesion Is Ameliorated by Rosmarinic Acid through Inhibition of NADPH Oxidase/PKC-δ/Integrin αIIbβ3 Signaling vol.10, pp.11, 2013, https://doi.org/10.3390/antiox10111671