DOI QR코드

DOI QR Code

Antibacterial Activity of an Ethyl Acetate Extract of Pseudomonas sp. UJ-6 against Methicillin-Resistant Staphylococcus aureus

  • Lee, Dae-Sung (POSTECH Ocean Science and Technology Institute, POSTECH) ;
  • Eom, Sung-Hwan (Department of Food Science and Technology, Pukyong National University) ;
  • Je, Jae-Young (Department of Marine Bio-Food Sciences, Chonnam National University) ;
  • Kim, Young-Mog (Department of Food Science and Technology, Pukyong National University) ;
  • Lee, Myung-Suk (Department of Microbiology, Pukyong National University) ;
  • Kim, Young-Man (Department of Food and Nutrition, Dong-Eui University)
  • Received : 2013.05.15
  • Accepted : 2013.06.03
  • Published : 2013.06.30

Abstract

In an effort to discover an alternative antibiotic for treating infections with methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas sp. UJ-6, a marine bacterium that exhibited antibacterial activity against MRSA, was isolated. The culture broth and its ethyl acetate extract exhibited bactericidal activity against MRSA. The extract also exhibited antibacterial activity against gram-negative bacteria, which were not susceptible to vancomycin. The treatment of MRSA with the extract resulted in abnormal cell lysis. The extract retained >95% of its anti-MRSA activity after heat treatment for 15 min at $121^{\circ}C$. Thus, although most antibiotics are unstable under conditions of thermal stress, Pseudomonas sp. UJ-6 produces a heat-stable anti-MRSA substance. The results of this study strongly suggest that Pseudomonas sp. UJ-6 can be used to develop a novel, heat-stable, broad-spectrum antibiotic for the treatment of MRSA infections.

Keywords

References

  1. Abad MJ, Bedoya LM and Bermejo P. 2011. Marine compounds and their antimicrobial activities. In: Science against Microbial Pathogens: Communicating Current Research and Technological Advances. Mendez-Vilas A, ed. Formatex Research, Badajoz, ES, pp. 1293-1306.
  2. Acebal C, Alcazar R, Canedo LM, de la Calle F, Rodriguez P, Romero F and Puentes JLF. 1998. Two marine Agrobacterium producers of sesbanimide antibiotics. J Antibiot 51, 64-67. https://doi.org/10.7164/antibiotics.51.64
  3. Acebal C, Canedo LM, Puentes JLF, Baz JP, Romero F, de la Calle F, Gravalos MDG and Rodriguez P. 1999. Agrochelin, a new cytotoxic antibiotic from a marine Agrobacterium: taxonomy, fermentation, isolation, physicochemical properties and biological activity. J Antibiot 52, 983-987. https://doi.org/10.7164/antibiotics.52.983
  4. Barna JCJ and Williams DH. 1984. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 38, 339-357. https://doi.org/10.1146/annurev.mi.38.100184.002011
  5. Barsby T, Kelly MT, Gagne SM and Andersen RJ. 2001. Bogorol A produced in culture by a marine Bacillus sp. reveals a novel template for cationic peptide antibiotics. Org Lett 3, 437-440. https://doi.org/10.1021/ol006942q
  6. Biabani MAF, Laatsch H, Helmke E and Weyland H. 1997. $\delta$-Indomycinone: a new member of pluramycin class of antibiotics isolated from marine Streptomyces sp. J Antibiot 50, 874-877. https://doi.org/10.7164/antibiotics.50.874
  7. Eom SH, Park JH, Yu DU, Choi JI, Choi JD, Lee MS and Kim YM. 2011. Antimicrobial activity of brown alga Eisenia bicyclis against methicillin-resistant Staphylococcus aureus. Fish Aquat Sci 14, 251-256. https://doi.org/10.5657/FAS.2011.0251
  8. Eom SH, Kim DH, Lee SH, Yoon NY, Kim JH, Kim TH, Chung YH, Kim SB, Kim YM, Kim HW, Lee MS and Kim YM. 2012. In vitro antibacterial activity and synergistic antibiotic effects of phlorotannins isolated from Eisenia bicyclis against methicillin-resistant Staphylococcus aureus. Phytother Res. Advanced online publication. http://dx.doi.org/10.1002/ptr.4851.
  9. Gerard JM, Haden P, Kelly MT and Andersen RJ. 1999. Loloatins A-D, cyclic decapeptide antibiotics produced in culture by a tropical marine bacterium. J Nat Prod 62, 80-85. https://doi.org/10.1021/np980219f
  10. Hanaki H, Labischinski H, Inaba T, Kondo N, Murakami H and Hiramatsu K. 1998. Increase in glutamine-non-amidated muropeptides in the peptidoglycan of vancomycin-resistant Staphylococcus aureus strain Mu50. J Antimicrob Chemother 42, 315-320. https://doi.org/10.1093/jac/42.3.315
  11. Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oquri T and Tenover FC. 1997. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40, 135-136. https://doi.org/10.1093/jac/40.1.135
  12. Hughes CC, Prieto-Davo A, Jensen PR and Fenical W. 2008. The marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. Org Lett 10, 629-631. https://doi.org/10.1021/ol702952n
  13. Imamura N, Nishijima M, Takadera T, Adachi K, Sakai M and Sano H. 1997. New anticancer antibiotics, pelagiomicins produced by a new marine bacterium Pelagiobacter variabilis. J Antibiot 50, 8-12. https://doi.org/10.7164/antibiotics.50.8
  14. Isnansetyo A and Kamei Y. 2003. MC21-A, a bactericidal antibiotic produced by a new marine bacterium, Pseudoalteromonas phenolica sp. nov. O-BC30T, against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47, 480-488. https://doi.org/10.1128/AAC.47.2.480-488.2003
  15. Isnansetyo A and Kamei Y. 2009. Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of MC21-B, an antibacterial compound produced by the marine bacterium Pseudoalteromonas phenolica O-BC30T. Int J Antimicrob Agents 34, 131-135. https://doi.org/10.1016/j.ijantimicag.2009.02.009
  16. Jevons MP. 1961. "Celbenin"-resistant Staphylococci. Br Med J 1, 124-125.
  17. Kamei Y and Isnansetyo A. 2003. Lysis of methicillin-resistant Staphylococcus aureus by 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga. Int J Antimicrob Agents 21, 71-74. https://doi.org/10.1016/S0924-8579(02)00251-0
  18. Keller S, Nicholson G, Drahl C, Sorensen E, Fiedler HP and Süssmuth RD. 2007. Abyssomicins G and H and atrop-abyssomicin C from the marine Verrucosispora strain AB-18-032. J Antibiot 60, 391-394. https://doi.org/10.1038/ja.2007.54
  19. Kwon HC, Kauffman CA, Jensen PR and Fenical W. 2006. Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus "Marinispora". J Am Chem Soc 128, 1622-1632. https://doi.org/10.1021/ja0558948
  20. Lee DH, Palermo B and Chowdhury M. 2008a. Successful treatment of methicillin-resistant Staphylococcus aureus meningitis with daptomycin. Clin Infect Dis 47, 588-590.
  21. Lee DS, Kang MS, Hwang HJ, Eom SH, Yang JY, Lee MS, Lee WJ, Jeon YJ, Choi JS and Kim YM. 2008b. Synergistic effect between dieckol from Ecklonia stolonifera and $\beta$-lactams against methicillin-resistant Staphylococcus aureus. Biotechnol Bioprocess Eng 13, 758-764. https://doi.org/10.1007/s12257-008-0162-9
  22. Lee DS, Eom SH, Jeong SY, Shin HJ, Je JY, Lee EW, Chung YH, Kim YM, Kang CK and Lee MS. 2013. Anti-methicillin-resistant Staphylococcus aureus (MRSA) substance from the marine bacterium Pseudomonas sp. UJ-6. Environ Toxicol Pharmacol 35, 171-177. https://doi.org/10.1016/j.etap.2012.11.011
  23. Levy SB. 2005. Antibiotic resistance-the problem intensifies. Adv Drug Deliv Rev 57, 1446-1450. https://doi.org/10.1016/j.addr.2005.04.001
  24. Macherla VR, Liu J, Sunga M, White DJ, Grodberg J, Teisan S, Lam KS and Potts BCM. 2007. Lipoxazolidinones A, B, and C: antibacterial 4-oxazolidinones from a marine actinomycete isolates from a Guam marine sediment. J Nat Prod 70, 1454-1457. https://doi.org/10.1021/np0702032
  25. Martin J, da S Sousa T, Crespo G, Palomo S, Gonzalez I, Tormo JR, de la Cruz M, Anderson M, Hill RT, Vicente F, Genilloud O and Reyes F. 2013. Kocurin, the true structure of PM181104, an antimethicillin-resistant Staphylococcus aureus (MRSA) thiazolyl peptide from the marine-derived bacterium Kocuria palustris. Mar Drugs 11, 387-398. https://doi.org/10.3390/md11020387
  26. McArthur KA, Mitchell SS, Tsueng G, Rheingold A, White DJ, Grodberg J, Lam KS and Potts BCM. 2008. Lynamicins A-E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J Nat Prod 71, 1732-1737. https://doi.org/10.1021/np800286d
  27. Micek ST. 2007. Alternatives to vancomycin for the treatment of methicillin- resistant Staphylococcus aureus infections. Clin Infect Dis 45, S184-S190. https://doi.org/10.1086/519471
  28. National Committee for Clinical Laboratory Standards (NCCLS). 2004. Method for Dilution Antimicrobial Susceptibility Testing for Bacteria That Grow Aerobically: Approved Standard. 7th ed. NCCLS Document M7-A6. NCCLS, Wayne, PA, US.
  29. Pusecker K, Laatsch H, Helmke E and Weyland H. 1997. Dihydrophencomycin methyl ester, a new phenazine derivative from a marine Streptomycete. J Antibiot 50, 479-483. https://doi.org/10.7164/antibiotics.50.479
  30. Rahman H, Austin B, Mitchell WJ, Morris PC, Jamieson DJ, Adams DR, Spragg AM and Schweizer M. 2010. Novel anti-infective compounds from marine bacteria. Mar Drugs 8, 498-518. https://doi.org/10.3390/md8030498
  31. Schaberg DR, Culver DH and Gaynes RP. 1991. Major trends in the microbial etiology of nosocomial infection. Am J Med 91, 72S-75S.
  32. Shiozawa H, Shimada A and Takahashi S. 1997. Thiomarinols D, E, F and G, new hybrid antimicrobial antibiotics produced by a marine bacterium: isolation, structure, and antimicrobial activity. J Antibiot 50, 449-452. https://doi.org/10.7164/antibiotics.50.449
  33. Totsuka K, Shiseki M, Kikuchi K and Matsui Y. 1999. Combined effects of vancomycin and imipenem against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo. J Antimicrob Chemother 44, 455-460. https://doi.org/10.1093/jac/44.4.455
  34. Witte W. 1999. Antibiotic resistance in gram-positive bacteria: epidemiological aspects. J Antimicrob Chemother 44, 1-9.
  35. Woodford N. 2005. Biological counterstrike: antibiotic resistance mechanisms of Gram-positive cocci. Clin Microbiol Infect 11, 2-21.