DOI QR코드

DOI QR Code

나노탄소 고분자 복합재료

Nanocarbon Polymer Composites

  • 최철림 (한국과학기술연구원, 한국과학기술 정보연구원 ReSEAT 프로그램)
  • 투고 : 2013.05.11
  • 심사 : 2013.06.14
  • 발행 : 2013.06.30

초록

탄소나노튜브(CNT)와 그래핀 같은 나노카본은 기계적 성질이 탁월하고 직경 대 길이의 비가 커서 고분자 복합재료의 강화재로 이상적인 것으로 생각된다. 그동안 나노탄소의 특성을 복합재료에 그대로 전환시키기 위한 많은 연구들이 있었지만 여전히 해결되지 않은 많은 문제, 예를 들면 효율적인 공정의 개발 등이 숙제로 남아있다. 이 총설에서는 CNT와 그래핀을 이용하는 나노탄소 고분자 복합재료 분야에서 이룬 그 간의 발전을 살펴보았으며, 여러 가지 나노탄소 고분자 복합재료에서 기계적인 강화가 어느 정도 이루어지는지 비교, 분석하고 향후 연구개발 방향을 전망하였다.

Nanocarbons such as carbon nanotubes (CNT) and graphene are considered to be ideal fillers for polymer composites, because of their outstanding mechanical properties and high length-to-diameter ratio. There has been much effort to realize the implementation of their full potential, but a large number of unsolved problems still must be challenged, for example, effective processing for fabrication. This review deals with the progress that has already been made in the area of nanocarbon polymer composites using CNT and graphene. Mechanical reinforcement of various nanocarbon polymer composites is analyzed and compared, and future perspectives in research and development that need to be done are discussed.

키워드

참고문헌

  1. Ijima, S., "Helical Microtubules of Graphitic Carbon," Nature, Vol. 354, No. 6348, 1991, pp. 56-58. https://doi.org/10.1038/354056a0
  2. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V, Grigorieva, I.V., and Firsov, A.A., "Electric Field Effect in Atomically Thin Carbon Films," Science, Vol. 306, 2004, pp. 666-669. https://doi.org/10.1126/science.1102896
  3. Vilatela, J.J., and Eder, D., "Nanocarbon Composites and Hybrids in Sustainability: A Review," ChemSusChem, Vol. 5, 2012, pp. 456-478. https://doi.org/10.1002/cssc.201100536
  4. Tasis, D., Tagmatarchis, N., Bianco, A., and Prato, M., "Chemistry of Carbon Nanotubes," Chemical Reviews, Vol. 106, 2006, pp. 1105-1136. https://doi.org/10.1021/cr050569o
  5. Jin, F.-L., and Park, S.-J., "A Review of the Preparation and Properties of Carbon Nanotubes-reinforced Polymer Composites," Carbon Letters, Vol. 12, No. 2, 2011, pp. 57-69. https://doi.org/10.5714/CL.2011.12.2.057
  6. Rahman, A., Ali, I., Al Zahrani, S.M., and Eleithy, R.H., "A Review of the Application of Nanocarbon Polymer Composites," Nano, Vol. 6, No. 3, 2011, pp. 185-203. https://doi.org/10.1142/S179329201100255X
  7. Huang, X., Qi, X., Boey, F., and Zhang H., "Graphene-based Composites," Chemical Society Reviews, Vol. 41, 2012, pp. 666-686. https://doi.org/10.1039/c1cs15078b
  8. Eder, D., "Carbon Nanotube-inorganic Hybrids," Chemical Reviews, Vol. 110, 2010, pp. 1348-1385. https://doi.org/10.1021/cr800433k
  9. Guo, P., Chen, X., Gao, X., Song, H., and Shen, H., "Fabrication and Mechanical Properties of Well-dispersed Multiwalled Carbon Nanotubes/epoxy Composites," Composites Science and Technology, Vol. 67, 2007, pp. 3331-3337. https://doi.org/10.1016/j.compscitech.2007.03.026
  10. Liu, L., Etika, K.C., Liao, K.S., Hess, L.A., Bergbreiter, D.E., and Grunlan, J.C., "Comparison of Covalently and Noncovalently Fuctionalized Carbon Nanotubes in Epoxy," Macromolecular Rapid Communications, Vol. 30, 2009, pp. 627-632. https://doi.org/10.1002/marc.200800778
  11. Spitalsky, Z., Krontiras, C.A., Georga, S.N., and Galiotis, C., "Effect of Oxidation Treatment of Multiwalled Carbon Nanotubes on the Mechanical and Electrical Properties of Their Epoxy Composites," Composites Part A: Applied Science and Manufacturing, Vol. 40, 2009, pp. 778-783. https://doi.org/10.1016/j.compositesa.2009.03.008
  12. Bai, J.B., and Allaoui, A., "Effect of the Length and the Aggregate Size of MWNTs on the Improvement of the Mechanical and Electrical Properties of Nanocomposites-experimental Investigation," Composites Part A: Applied Science and Manufacturing, Vol. 34, 2003, pp. 689-694. https://doi.org/10.1016/S1359-835X(03)00140-4
  13. Yang, M., Gao, Y., Li, H., and Adronov, A., "Fuctionalization of Multiwalled Carbon Nanotubes with Polyamide 6 by Anionic Ring-opening Polymerization," Carbon, Vol. 45, 2007, pp. 2327-2333. https://doi.org/10.1016/j.carbon.2007.07.021
  14. Gojny, F.H., Wichmann, M.H.G., Fiedler, B., and Schulte, K., "Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites-a Comparative Study," Composites Science and Technology, Vol. 65, 2005, pp. 2300-2313. https://doi.org/10.1016/j.compscitech.2005.04.021
  15. Hou, H., Ge, J.J., Zeng, J., Li, Q., Reneker, D.H., Greiner, A., and Cheng, S.Z.D., "Electrospun PAN Nanofibers Containing a High Concentration of Well-aligned Multiwall Carbon Nanotubes," Chemistry of Materials, Vol. 17, 2005, pp. 967-973. https://doi.org/10.1021/cm0484955
  16. Bin, Y., Kitanaka, M., Zhu, D., and Matsuo, M., "Development of Highly Oriented Polyethylene Filled with Aligned Carbon Nanotubes by Gellation/Crystallization from Solution," Macromolecules, Vol. 36, 2003, pp. 6213-6219. https://doi.org/10.1021/ma0301956
  17. Xu, X.X., Hong, W.J., Bai, H., Li, C., and Shi, G.Q., "Strong and Ductile Poly(vinyl alcohol)/Graphene Oxide Composite Films with a Layered Structure," Carbon, Vol. 47, 2009, pp. 3538-3543. https://doi.org/10.1016/j.carbon.2009.08.022
  18. Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T., and Chen, Y., "Molecular-level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of Their Nanocomposites," Advanced Functional Materials, Vol. 19, 2009, pp. 2297-2302. https://doi.org/10.1002/adfm.200801776
  19. Cai, D., Yusop, K., and Song, M., "The Mecnanical Properties and Morphology of a Graphite Oxide Nanoplatelet/Polyurethane Composite," Nanotechnology, Vol. 20, 2009, 085712. https://doi.org/10.1088/0957-4484/20/8/085712
  20. Wei, T., Luo, G.L., Fan, Z.J., Zheng, C., Yan, J., Yao, C. Z., Li, W.F., and Zhang, C., "Preparation of Graphene Nanosheet/ Polymer Composites Using in situ Reduction-extractive Dispersion," Carbon, Vol. 47, 2009, pp. 2296-2299. https://doi.org/10.1016/j.carbon.2009.04.030
  21. Zhang, H.B., Zheng, W.G., Yan, Q., Yang, Y., Wang, J.W., Lu, Z.H., Ji, G.Y., and Yu, Z.Z., "Electrically Conductive Polyethylene Terephthalate/Graphene Nanocomposites Prepared by Melt Compounding," Polymer, Vol. 51, 2010, pp. 1191-1196. https://doi.org/10.1016/j.polymer.2010.01.027
  22. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhass, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., and Ruoff, R.S., "Graphene-based Composite Materials," Nature, Vol. 442, 2006, pp. 282-286. https://doi.org/10.1038/nature04969
  23. Coleman, J.N., Khan, U., and Gun'ko, Y.K., "Mechanical Reinforcement of Polymers Using Carbon Nanotubes", Advanced Materials, Vol. 18, 2006, pp. 689-706. https://doi.org/10.1002/adma.200501851
  24. Choi, O., Lee, W., Lee, S.-B., Yi, J.-W., Kim, J.-B., Choe, H.-S., and Byun, J.-H., "CNT and CNF Reinforced Carbon Fiber Hybrid Composites by Electrophoresis Deposition," Journal of the Korean Society for Composite Materials, Vol. 23, No. 3, 2010, pp. 7-12. https://doi.org/10.7234/kscm.2010.23.3.007
  25. Lu, W., Zu, M., Byun, J.-H., Kim, B.-S., and Chou, T.-W., "State of the Art of Carbon Nanotube Fibers: Opportunities and Challenges," Advanced Materials, Vol. 24, 2012, pp. 1805-1833. https://doi.org/10.1002/adma.201104672
  26. Zhang, M., Atkinson, K.R., and Baughman, R.H., "Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology," Science, Vol. 306, 2004, pp. 1358-1361. https://doi.org/10.1126/science.1104276
  27. Ericson, L.M., Fan, H., Peng, H., Davies, V.A., Zhou, J.S., Wang, Y., Booker, R., Vavro, J., Guthy, C., Parra-Vasquez, A.N., Kim, M.J., Ramesh, S., Saini, R.K., Kittrell, C., Lavin, G., Schmidt, H., Adams, W.W., Billups, W.E., Pasquali, M., Hwang, W., Hauge, R.H., Fisher, J.E., and Smalley, R.E., "Macroscopic, Neat, Singlewalled Carbon Nanotube Fibers," Science, Vol. 305, 2004, pp. 1447-1450. https://doi.org/10.1126/science.1101398
  28. Vigolo, B., Penicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P., and Poulin, P., "Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes," Science, Vol. 290, 2000, pp. 1331-1334. https://doi.org/10.1126/science.290.5495.1331
  29. Li, Y.L., Kinloch, I.A., and Windle, A.H., "Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis," Science, Vol. 304, 2004, pp. 276-278. https://doi.org/10.1126/science.1094982
  30. Mora R.J., Vilatela J.J., and Windle A.H., "Properties of Composites of Carbon Nanotube Fibers," Composites Science and Technology, Vol. 69, 2009, pp. 1558-1563. https://doi.org/10.1016/j.compscitech.2008.11.038
  31. Young, K., Blighe, F.M., Vilatela, J.J., Windle, A.H., Kinloch, I.A., Deng, L., Young, R.J., and Coleman, J.N., "Strong Dependence of Mechanical Properties on Fiber Diameter for Polymernanotube Composite Fibers : Differentiating Defect from Orientation Effects," ACS Nano, Vol. 4, 2010, pp. 6989-6997. https://doi.org/10.1021/nn102059c
  32. Ma, W., Liu, L., Zhang, Z., Yang, R., Liu, G., Zhang, T., An, X., Yi, X., Ren, Y., Niu, Z., Li, J., Dong, H., Zhou, W., Ajayan, P.M., and Xie, S., "High-strength Composite Fibers: Realizing True Potential of Carbon Nanotubes in Polymer Matrix Through Continuous Reticulate Architecture and Molecular Level Couplings," Nano Letter, Vol. 9, 2009, pp. 2855-2861. https://doi.org/10.1021/nl901035v

피인용 문헌

  1. A Study on the Abrasio-Resistant Properties of the Poly-DCPD type Epoxy Resin vol.30, pp.3, 2018, https://doi.org/10.13000/JFMSE.2018.06.30.3.982
  2. A Study on the Thermal Characteristics of the Heat Sink Material for LED Lighting of Thermal Conductive Polymer vol.17, pp.1, 2015, https://doi.org/10.17958/ksmt.17.1.201502.11
  3. 그래핀 기반 폴리이미드 복합재의 기계적 물성 vol.30, pp.5, 2013, https://doi.org/10.7234/composres.2017.30.5.261