DOI QR코드

DOI QR Code

Evaluation of Radiation Exposure Dose for Examination Purposes other than the Critical Organ from Computed Tomography: A base on the Dose Reference Level (DRL)

전산화단층촬영에서 촬영 목적 부위와 주변 결정장기에 대한 피폭선량 평가: 선량 권고량 중심으로

  • Lee, Seoyoung (Department of Radiological Science, Dongeui University) ;
  • Kim, Kyunglee (Department of Radiological Science, Dongeui University) ;
  • Ha, Hyekyoung (Department of Radiological Science, Dongeui University) ;
  • Im, Inchul (Department of Radiological Science, Dongeui University) ;
  • Lee, Jaeseung (Department of Radiological Science, Dongeui University) ;
  • Park, Hyonghu (Department of Radiology, Bongseng Memorial Hospital) ;
  • Kwak, Byungjoon (Department of Public Health, Daegu Hanny University) ;
  • Yu, Yunsik (Department of Radiological Science, Dongeui University)
  • Received : 2013.01.01
  • Accepted : 2013.04.19
  • Published : 2013.04.30

Abstract

In this study measured patient exposure dose for purpose exposure area and peripheral critical organs by using optically stimulated luminescence dosimeters (OSLDs) from computed tomography (CT), based on the measurement results, we predicted the radiobiological effects, and would like to advised ways of reduction strategies. In order to experiment, OSLDs received calibration factor were attached at left and right lens, thyroid, field center, and sexual gland in human body standard phantom that is recommended in ICRP, and we simulated exposure dose of patients in same condition that equal exposure condition according to examination area. Average calibration factor of OSLDs were $1.0058{\pm}0.0074$. In case of left and right lens, equivalent dose was measure in 50.49 mGy in skull examination, 0.24 mGy in chest, under standard value in abdomen, lumbar spine and pelvis. In case of thyroid, equivalent dose was measured in 10.89 mGy in skull examination, 7.75 mGy in chest, 0.06 mGy in abdomen, under standard value in lumber spine and pelvis. In case of sexual gland, equivalent dose was measured in 21.98 mGy, 2.37 mGy in lumber spine, 6.29 mGy in abdomen, under standard value in skull examination. Reduction strategies about diagnosis reference level (DRL) in CT examination needed fair interpretation and institutional support recommending international organization. So, we met validity for minimize exposure of patients, systematize influence about exposure dose of patients and minimize unnecessary exposure of tissue.

최근 다중검출기 CT의 보편화 된 사용으로 환자의 피폭선량이 증가하고 있다. 따라서 광자극발광선량계를 이용해 촬영 목적 부위와 주변 결정장기에 대한 환자의 피폭선량을 측정하고 그에 따른 생물학적 효과를 예측하여 저감화 방안을 제시하고자 하였다. ICRP에서 권고한 표준안을 대상으로 만들어진 인체 모형 표준 팬텀에 교정상수를 부여받은 OSD 선량계를 측정하고자 하는 좌 우 수정체, 갑상선, 촬영의 중심점, 생식선에 부착하여 각 검사 부위별 노출 조건과 동일한 상태에서 환자의 피폭 선량을 모사하였다. OSL 선량계의 평균 교정상수는 $1.0058{\pm}0.0074$이었으며 검사 부위별 주변 결정장기의 등가선량은 좌 우측 수정체의 경우 직접 피폭이 약 50mGy로 최대였으며 간접 피폭되는 경우 0.24mGy, 원거리에서는 0.005mGy미만의 기준 준위 이하로 측정되었다. 갑상선의 경우 두부 검사에서 10.89mGy로 최대였으며 흉부에서 7.75mGy, 복부 및 요추부, 골반부에서는 기준 미만이었다. 생식선의 경우 골반검사에서 21.98mGy로 최대였으며 간접 피폭되는 검사에서 기준 준위 미만에서 6.92mGy까지 피폭되었다. CT 검사에서 DRL에 대한 저감화 방법은 국제기구에서 권고하고 있는 방사선 방어 원칙에 대한 정당한 해석과 제도적 뒷받침이 필요하다. 따라서 환자의 피폭을 최소화하기 위해서는 정당성을 충족하여야 하며 환자의 피폭선량에 미치는 영향들을 체계화하고 조직의 불필요한 피폭을 최소화 하여야 한다.

Keywords

References

  1. UNSCEAR, "Sources and Effects of Ionizing Radiation", UNSCEAR 2010 Report, New York, United Nations, 2010.
  2. NCRP, "Ionizing Radiation Exposure of the Population of the United States", NCRP Report No. 106, Bethesda, Maryland, 2009.
  3. Hoang JK, Yoshizumi TT, Nguyen G, et al, "Variation in Tube Voltage for Adult Neck MDCT: Effect on Radiation Dose and Image Quality", AJR Am J Roentgenol, Vol. 198, No. 3, pp. 621-627, 2012. https://doi.org/10.2214/AJR.11.6831
  4. Brenner DJ, Hall EJ, "Computed Tomography: An Increasing Source of Radiation Exposure", N Engl J Med, Vol. 357, No. 22, pp. 2277-2284, 2007. https://doi.org/10.1056/NEJMra072149
  5. ICRP, "The 2007 Recommendations of the International Commission on Radiological Protection", ICRP Publication 103, 2007.
  6. Fukushima Y, Tsushima Y, Takei H, et al, "Diagnostic reference level of computed tomography (CT) in japan", Radiat Prot Dosimetry, Vol. 151, No. 1, pp. 51-57, 2012. https://doi.org/10.1093/rpd/ncr441
  7. IAEA, "International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation sources", IAEA Safety Series No. 115, 1996.
  8. IAEA, "Absorbed Dose Determination in External Beam Radiotherapy. An International Code of Practice for dosimetry Based on Standards of Absorbed Dose to Water", IAEA report series No. 398, Vienna, MD, 2001.
  9. Hakanen A, "Simulated and measured dose response characteristics of detectors used for CT dosimetry", Phys Med Biol, Vol. 57, No. 16, pp. N319-328, 2012. https://doi.org/10.1088/0031-9155/57/16/N319
  10. UNSCEAR, "Medical Radiation Exposure", UNSCEAR 2000 Report, New York, United Nations, 2000.
  11. Mini RL, Vock P, Mury R, Schneeberger PP, "Radiation Exposure of Patients Who Undergo CT of the Trunk", Radiology, Vol. 195, No. 2, pp. 557-562, 1995. https://doi.org/10.1148/radiology.195.2.7724783
  12. Nishizawa K, Maruyama T, Takayama M, et al, "Estimation of Effective Dose from CT Examination", Nihon Igaku Hoshasen Gakkai Zasshi, Vol. 55, No. 11, pp. 763-768, 1995.
  13. ICRP, "Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values", ICRP Publication 89, 2002.
  14. Hidajat N, Mäurer J, Schroder RJ, et al, "Relationships between physical dose quantities and patient dose in CT", Br J Radiol, Vol. 72, No. 858, pp. 556-561, 1999. https://doi.org/10.1259/bjr.72.858.10560337
  15. Li B, Yadava G, Hsieh J, "Quantification of head and body CTDI(VOL) of dual-energy x-ray CT with fast-kVp switching", Med Phys, Vol. 38, No. 5, pp. 2595-2601, 2011. https://doi.org/10.1118/1.3582701
  16. CEC, "Quality Criteria for Computed Tomography, European Guidelines", EUR 16262, Luxembourg, 1999.
  17. McCollough CH, Leng S, Yu L, et al, "CT dose index and patient dose: they are not the same thing", Radiology, Vol. 259, No. 2, pp. 311-316, 2011. https://doi.org/10.1148/radiol.11101800
  18. ICRP, "Managing Patient Dose in Computed Tomography", ICRP Publication 87, 2000.
  19. ICRP, "The 1990 Recommendations of the International Commission on Radiological Protection", ICRP Publication 60, 1991.
  20. Kalender WA, "Computed Tomography", John Wiley and Sons, New York, pp. 39, 2000.
  21. Dougeni E, Faulkner K, Panayiotakis G, "A review of patient dose and optimisation methods in adult and paediatric CT scanning", Eur J Radiol, Vol. 81, No. 4, pp. e665-683, 2012. https://doi.org/10.1016/j.ejrad.2011.05.025
  22. IAEA, "International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources", IAEA safety series No. 115, Vienna, 1996.
  23. Kuba RK, Beck JO Jr, "Radiation dosimetry in Panorex roentgenography. Part 3, Radiation dose measurements", Oral Surg Oral Med Oral Pathol, Vol. 25, No. 3, pp. 393-404, 1968. https://doi.org/10.1016/0030-4220(68)90014-5
  24. Zielinski JM, Shilnikova NS, Krewski D, "Canadian National Dose Registry of radiation workers: overview of research from 1951 through 2007", Int J Occup Med Environ Health, Vol. 21, No. 4, pp. 269-275, 2008.

Cited by

  1. Image Evaluation for A Kind of Patient Fixing Pad in 64 Multi-Channel Detector Computed Tomograph vol.7, pp.1, 2016, https://doi.org/10.15207/JKCS.2016.7.1.089
  2. A Comparative Study on the Lens Dose According to the Change of Shielding Material Used in Brain Computed Tomography vol.9, pp.1, 2015, https://doi.org/10.7742/jksr.2015.9.1.31
  3. 머신러닝 기반 신체 계측정보를 이용한 CT 피폭선량 예측모델 비교 vol.43, pp.6, 2020, https://doi.org/10.17946/jrst.2020.43.6.503
  4. 방사선검사에 관한 기록 의무화의 필요성 vol.44, pp.4, 2013, https://doi.org/10.17946/jrst.2021.44.4.399