DOI QR코드

DOI QR Code

이차유동의 방향이 막냉각 효율에 미치는 영향

Effect of Secondary Flow Direction on Film Cooling Effectiveness

  • 투고 : 2013.01.10
  • 심사 : 2013.05.16
  • 발행 : 2013.07.01

초록

막냉각에 관한 많은 연구들은 주유동과 이차유로가 평행한 형태로 연구가 이루어졌다. 하지만 실제 터빈 블레이드에서 이차유로의 방향은 일반적으로 주유동의 방향에 수직한 형태이다. 그래서 본 연구에서는 이차유동의 방향이 이중분사 막냉각의 효율에 미치는 영향을 수치해석을 통해 알아보고자 한다. 분사율은 1, 2이고 횡방향 분사각은 $22.5^{\circ}$이다. 분사율이 1일 때 평행 형상에서는 안티키드니 와류가 잘 형성되어 막냉각 효율이 수직 형상의 경우보다 더 높다. 반면에 분사율이 2일 때 수직 형상의 막냉각 효율은 평행 형상보다 향상되었다. 많은 유량의 제트가 서로 반대 방향으로 분사되기 때문에 두 형상 모두 막냉각 효율이 높게 나타난다. 하지만 안티키드니 와류의 영향은 다른 분사율보다 상대적으로 작다.

Several studies of film cooling were accomplished with a secondary flow channel parallel to the main flow. In real turbine blades, however, the direction of the secondary flow channel is generally normal to the main flow. Thus, this study performs a numerical analysis to investigate the effects of the direction of secondary flow on the effectiveness of double-jet film cooling. The blowing ratio is 1 and 2, and the lateral injection angle is $22.5^{\circ}$. The parallel channel case creates a well-developed anti-kidney vortex with a blowing ratio of 1, and the laterally averaged film cooling effectiveness of the parallel channel is enhanced compared to the normal channel. The normal channel shows higher performance with a blowing ratio of 2. Both cases show high film cooling effectiveness. These phenomena can be attributed to a high blowing ratio and flow rate rather than an anti-kidney vortex.

키워드

참고문헌

  1. Walters, D. K. and Leylek, J. H., 2000, "A Detailed Analysis of Film-Cooling Physics: Part I-Streamwise Injection with Cylindrical Holes," Journal of Turbomachinery, Vol. 122, No. 1, pp. 102-112. https://doi.org/10.1115/1.555433
  2. Rhee, D. H., Kim, B. K. and Cho, H. H., 1998, "Characteristics of Heat/Mass Transfer and Film Cooling Effectiveness Around a Single Film Cooling Hole with Compound Injection Angles," Trans. Soc. Mech. Eng. B, Vol. 22, No. 10, pp. 1433-1444.
  3. Leylek, J. H. and Zerkle, R. D., 1994, "Discrete-Jet Film Cooling: A Comparison of Computational Results with Experiments," Journal of Turbomachinery, Vol. 116, No. 3, pp. 358-368. https://doi.org/10.1115/1.2929422
  4. Dittmar, J., Schulz, A. and Wittig, S., 2003, "Assessment of Various Film-Cooling Configurations Including Shaped and Compound Angle Holes Based on Large-Scale Experiments," Journal of Turbomachinery, Vol. 125, No. 1, pp. 57-64. https://doi.org/10.1115/1.1515337
  5. Cho, H. H., Rhee, D. H. and Kim, B. G., 2001, "Enhancement of Film Cooling Performance Using a Shaped Film Cooling Hole with Compound Angle Injection," JSME International Journal, Series. B, Vol. 44, No. 10, pp. 99-110. https://doi.org/10.1299/jsmeb.44.99
  6. Kusterer, K., Elyas, A., Bohn, D., Sugimoto, T. and Tanaka, R., 2008, "Double-Jet Film-Cooling for Highly Efficient Film-Cooling with Low Blowing Ratios," Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air, Berlin, Germany.
  7. Han, C., Ren, J. and Jiang, H., 2012, "Multi-Parameter Influence on Combined-Hole Film Cooling System," International Journal of Heat and Mass Transfer, Vol. 55, pp. 4232-4240. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.064
  8. Ahn, J., Jung, I. S., and Lee, J. S., 2003, "Film Cooling from Two Rows of Holes with Opposite Orientation Angles: Injectant Behavior and Adiabatic Film Cooling Effectiveness," International Journal of Heat and Fluid Flow, Vol. 24, No. 1, pp. 91-99. https://doi.org/10.1016/S0142-727X(02)00200-X
  9. Oguntade, H. I., Andrews, G. E., Burns, A., Ingham, D., and Pourkashanian, M., 2010, "CFD Predictions of Single Row Film Cooling with Inclined Holes: Influence of Hole Outlet Geometry," Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air, Glasgow, UK.
  10. Gritsch, M., Schulz, A. and Wittig, S., 1998, "Discharge Coefficient Measurements of Film-Cooling Holes with Expanded Exits," Journal of Turbomachinery, Vol. 120, No. 3, pp. 557-563. https://doi.org/10.1115/1.2841753