• Title/Summary/Keyword: Double-jet Film Cooling

Search Result 3, Processing Time 0.019 seconds

Effects of the Lateral Ejection Angles and Distances of Double-Jet Holes on Flim Cooling Effectiveness (이중분사 막냉각 홀의 측면 분사각 및 홀 사이의 거리가 막냉각 효율에 미치는 영향)

  • Choi, Dae-Woong;Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.33-41
    • /
    • 2012
  • In the present work, a parametric study on double-jet film-cooling has been carried out to enhance the film-cooling effectiveness using three-dimensional Reynolds-averaged Navier-Stokes analysis. The shear stress transport turbulence model is used as the turbulence closure. The lateral ejection angles and the lateral and streamwise distance between the centers of the cooling holes are chosen as the geometric parameters. The spatially averaged film-cooling effectiveness averaged over an area of 8 hole diameters in width and 30 hole diameters in streamwise length is used to evaluate the performance of film-cooling. The parameter of the lateral distance has the largest impact on the film cooling effectiveness compared to the others. On the other hand, the parameter of streamwise distance gives the least influence on the film cooling effectiveness.

A Study on the Film-cooling Characteristics of Gas Turbine Blade with Various Area Ratios and Ejection Angles of the Double Jet Holes (이중분사 홀의 면적비와 분사각 변화에 따른 가스터빈 막냉각 특성 연구)

  • Cho, Moon-Young;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.59-64
    • /
    • 2014
  • The kidney vortex is the important factor adversely influencing film cooling effectiveness. In general, double jet film-cooling hole is designed to overcome the kidney vortex by generating anti-kidney vortices. In this study, the film cooling characteristics and the effectiveness of the double jet film cooling hole were numerically investigated with various area ratios of the first($A_1$) and second($A_2$) cooling hole($A_1/A_2$=0.8, 1.0, 1.25) and lateral ejection angle(${\alpha}$ = $30^{\circ}$, $45^{\circ}$, $60^{\circ}$) as the design parameters. The effects of lateral distance between the first and second row holes are investigated. Numerical study was performed by using ANSYS CFX with the shear stress transport(SST) turbulence model. The film cooling effectiveness and temperature distribution were graphically depicted with various flow and geometrical conditions.

Effect of Secondary Flow Direction on Film Cooling Effectiveness (이차유동의 방향이 막냉각 효율에 미치는 영향)

  • Park, Sehjin;Choi, Seok Min;Sohn, Ho-Seong;Chung, Heeyoon;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.655-663
    • /
    • 2013
  • Several studies of film cooling were accomplished with a secondary flow channel parallel to the main flow. In real turbine blades, however, the direction of the secondary flow channel is generally normal to the main flow. Thus, this study performs a numerical analysis to investigate the effects of the direction of secondary flow on the effectiveness of double-jet film cooling. The blowing ratio is 1 and 2, and the lateral injection angle is $22.5^{\circ}$. The parallel channel case creates a well-developed anti-kidney vortex with a blowing ratio of 1, and the laterally averaged film cooling effectiveness of the parallel channel is enhanced compared to the normal channel. The normal channel shows higher performance with a blowing ratio of 2. Both cases show high film cooling effectiveness. These phenomena can be attributed to a high blowing ratio and flow rate rather than an anti-kidney vortex.