DOI QR코드

DOI QR Code

Controllability of Threshold Voltage of ZnO Nanowire Field Effect Transistors by Manipulating Nanowire Diameter by Varying the Catalyst Thickness

  • Lee, Sang Yeol (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2013.03.13
  • Accepted : 2013.04.25
  • Published : 2013.06.25

Abstract

The electrical properties of ZnO nanowire field effect transistors (FETs) have been investigated depending on various diameters of nanowires. The ZnO nanowires were synthesized with an Au catalyst on c-plane $Al_2O_3$ substrates using hot-walled pulsed laser deposition (HW-PLD). The nanowire FETs are fabricated by conventional photo-lithography. The diameter of ZnO nanowires is simply controlled by changing the thickness of the Au catalyst metal, which is confirmed by FE-SEM. It has been clearly observed that the ZnO nanowires showed different diameters simply depending on the thickness of the Au catalyst. As the diameter of ZnO nanowires increased, the threshold voltage of ZnO nanowires shifted to the negative direction systematically. The results are attributed to the difference of conductive layer in the nanowires with different diameters of nanowires, which is simply controlled by changing the catalyst thickness. The results show the possibility for the simple method of the fabrication of nanowire logic circuits using enhanced and depleted mode.

Keywords

References

  1. Haung M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P, Science 292, 1897 (2001) [DOI: http://dx.doi.org/10.1126/science.1060367].
  2. Yan H, Johnson J, Law M, He R, Knutsen K, Mckinneyang J R, Pham J, Saykally R and Yang P, Adv. Mater. 15, 1907 (2003) [DOI:http://dx.doi.org/10.1002/adma.200305490].
  3. Konenkamp R, Word R C and Schlegel C 2004 Appl. Phys. Lett. 85, 6004 (2004). https://doi.org/10.1063/1.1836873
  4. Wang H T, Kang B S, Ren F, Tien L C, Sadik P W, Norton D P, Pearton S J and Lin J Appl. Phys. Lett. 86, 243503 (2005). [DOI:http://dx.doi.org/10.1063/1.1949707]
  5. Law M, Greene L E, Johnson J C, Saykally R and Yang P Nature Mater. 4, 455 (2005) [DOI: http://dx.doi.org/10.1038/nmat1387].
  6. X. Wang, J. Zhang, Z. Zhu, Appl. Surf. Sci. 252, 2404. (2006) DOI:http://dx.doi.org/10.1016/j.apsusc.2005.04.047].
  7. Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Appl. Surf. Sc. 242,212 (2005) [DOI: http://dx.doi.org/10.1016/j.apsusc.2004.08.013].
  8. Umasankar Yogeswaran and Shen-Ming Chen, Sensors, 8, 290-313 (2008) [DOI: http://dx.doi.org/10.3390/s8010290].
  9. U. OzgUr, Y. I. Alivov, C. Liu, A. Teke,b_ M. A. Reshchikov, S. Doan, V. Avrutin,Chen, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005). https://doi.org/10.1063/1.1992666
  10. Gang Xiong, John Wilkinson, Brian Mischuck, S. Tuzemen, K. B. and R. T. Williams, Appl. Phys. Lett. 80, 1195 (2002) [DOI:http://dx.doi.org/10.1063/1.1449528].
  11. Y. Ma, G. T. Du,a) S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang, and D. L. Liu, J. Appl. Phys. 95, 6268 (2004) [DOI: http://dx.doi.org/10.1063/1.1713040].
  12. Zhi Gen Yu, Ping Wua, Hao Gonga, Appl. Phys. Lett. 88, 132114 (2006) [DOI: http://dx.doi.org/10.1063/1.2192089].
  13. Huang H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P, Science 292, 1897, (2001) [DOI: http://dx.doi.org/10.1126/science.1060367].
  14. Park W I, Kim D H, Jung S W and Yi G C Appl. Phys Lett. 80, 4232 (2002) [DOI: http://dx.doi.org/10.1063/1.1482800].
  15. Greene L E, Law M, Goldberger J, Kim F, Johnson J C, Zhang Y F, Saykally R J and Yang P D Angew. Chem. Int. Edn. 42, 3031 (2003). https://doi.org/10.1002/anie.200351461
  16. Kodambaka S, Tersoff J, Reuter M C and Ross F M, Science. 316, 729 (2007) [DOI: http://dx.doi.org/10.1126/science.1139105].
  17. Shalish I, Temkin H and Narayanamurti V, Phys. Rev. B. 69, 245401 (2004) [DOI: http://dx.doi.org/10.1103/Phys-RevB.69.245401].
  18. Liao L, Lu H B, Li J C, He H, Wang D F, Fu D J, Liu C and Zhang W F, J. Phys. Chem. C, 111 1900 (2007) [DOI: http://dx.doi.org/10.1021/jp065963k].
  19. Chen C W, Chen K H, Shen C H, Ganguly A, Chen L C, Wu J J, Wen H I and Pong W F, Appl. Phys. Lett. 88, 241905 (2006) [DOI:http://dx.doi.org/10.1063/1.2211047].
  20. Lin K F, Cheng H M, Hsu H C, Lin L J and Hsieh W F. Chem. Phys. Lett. 409 208. (2005) [DOI: http://dx.doi.org/10.1016/j.cplett.2005.05.027].
  21. Wang R P, Xu G and Jin P, Phys. Rev. B. 69, 113303(2004) [DOI:http://dx.doi.org/10.1103/PhysRevB.69.113303].
  22. Michael H. Hoang, Yiying Wu, Henning Feick, Ngan Tran, Eicke Weber, and Peidong Yang, Adv. Mater. 13, 113 (2001) [DOI:http://dx.doi.org/10.1002/1521-4095(200101)13:2<113::AIDADMA113> 3.0.CO;2-H].
  23. XING Ying-Jie, XI Zhong-He, XUE Zeng-Quan, YU Da-Peng, CHIN.PHYS.LETT. 20, 700 (2003) [DOI: http://dx.doi.org/10.1088/0256-307X/20/5/331].
  24. Sang Hyun Lee, Seogwoo Lee, Jun-Seok Ha, Hyo-Jong Lee, Jae Wook Lee, Jeong Yong Lee, Soon-Ku Hong, Takenari Goto, Meoung Whan Cho and Takafumi Yao, J. Phys. D. 42, 225403 (2009) [DOI: http://dx.doi.org/10.1088/0022-3727/42/22/225403].
  25. S. Y. Lee, Y. W. Song, and K. A. Jeon, J. Cryst. Growth 310, 4477 (2008) [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2008.07.049].
  26. Woong-Ki Hong, Jung Inn Sohn, Dae-Kue Hwang, Soon-Shin Kwon, Gunho Jo, Sunghoon Song, Seong-Min Kim, Hang-Ju Ko, Seong-Ju Park, Mark E. Welland, and Takhee Lee, Nano lett.8, 950 (2008) [DOI: http://dx.doi.org/10.1021/nl0731116].
  27. J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and C. J. Kim, Appl. Phys. Lett. 93, 033513 (2008) [DOI: http://dx.doi.org/10.1063/1.2963978].

Cited by

  1. Review on Thermionic Energy Converters vol.63, pp.6, 2016, https://doi.org/10.1109/TED.2016.2556751
  2. Zinc oxide nanowire gas sensors: fabrication, functionalisation and devices vol.31, pp.14, 2015, https://doi.org/10.1179/1743284714Y.0000000747