DOI QR코드

DOI QR Code

Effects of Garlic Extract on the Antioxidative Activity of Isoflavones

이소플라본의 항산화능에 대한 마늘 추출물의 영향

  • 강진훈 (고신대학교 식품영양학과)
  • Received : 2013.02.15
  • Accepted : 2013.04.24
  • Published : 2013.06.30

Abstract

This study was carried out to elucidate the effect of garlic extracts on the antioxidative activities of three isoflavones. All isoflavone samples showed greater antioxidative activity than butylated hydroxyanisole (BHA). In EDA (electron donating ability) tests, reducing power, SOD-like activity, and hydroxyl radical scavenging activity, all isoflavone samples with garlic extracts added showed significantly greater antioxidative effects than BHA. In conclusion, isoflavones have a potent antioxidative activity and garlic extracts have a big synergistic effect on this antioxidative activity.

본 연구에서는 시판하는 naringin, rutin 및 morin 등의 이소플라본을 시료로 하여 환원력, 전자공여능, SOD 유사활성 및 hydroxyl radical 소거능 등의 항산화특성을 확인할 수 있는 실험을 행하였으며 이들에 대한 마늘 추출물의 영향을 함께 조사하였다. 항산화능을 측정한 모든 실험항목에서 대조군으로서 사용한 합성항산화제인 BHA보다 훨씬 양호한 결과를 나타내었으며, 이소플라본의 농도가 증가함에 따라서도 다소간 증가하는 것으로 나타났지만 그 차이는 크지 않았다. 특히 마늘을 첨가하였을 때는 그 효능이 더욱 상승하는 것으로 나타났는데 마늘의 첨가량을 늘릴수록 그 효능은 더욱 크게 나타났다. 또한 이소플라본 간의 비교에서는 실험항목 별로 특별한 경향은 찾아볼 수 없었는데 환원력에서는 naringin이, hydroxyl radical 소거효과 및 SOD 유사활성에서는 rutin이, 그리고 전자공여능에서는 morin이 다소 우수한 결과를 나타내었다. 따라서 이소플라본의 항산화적 특성이 매우 뛰어남을 확인할 수 있었으며 이러한 작용은 합성항산화제인 BHA보다 우수하여 기능성 식품가공을 위한 주요 소재로서도 유효하게 이용될 수 있다고 생각된다. 또한 마늘의 섭취가 이소플라본의 항산화적 특성에 상승효과를 제공할 수 있는 것으로 나타나 식생활의 올바른 개선에 중요한 역할을 할 수 있을 것으로 여겨지는 바이다.

Keywords

References

  1. Ruiz-Larrea MB, Mohan AR, Paganga G, Miller NJ, Bolwell GP, Rice-Evans CA. 1997. Antioxidant activity of phytoestrogenic isoflavones. Free Radic Res 26: 63-70. https://doi.org/10.3109/10715769709097785
  2. Wei H, Wei L, Frenkel K, Bowen R, Barnes S. 1993. Inhibition of tumor promotor-induced hydrogen peroxide formation in vitro and in vivo by genistein. Nutrr Cancer 20: 1-12. https://doi.org/10.1080/01635589309514265
  3. Kwoon TW, Song YS, Kim JS, Moon GS, Kim JI, Hong JH. 1998. Current research on the bioactive functions of soyfoods in Korea. Korea Soybean Digest 15: 1-2.
  4. Kirk EA, Sutherland P, Wang SA, Chait A, LeBoeuf RC. 1998. Dietary isoflavones reduce plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL receptor-deficient mice. J Nutr 128: 954-959.
  5. Matsubara Y, Kumamoto H, Lizuka Y, Murakami T, Okamoto K, Miyake H, Yokoi K. 1985. Structure and hypotensive effect of flavonoid glycosides in Citrus unshiu peeings. Agric Biol Chem 49: 909-914. https://doi.org/10.1271/bbb1961.49.909
  6. Adlercreutz CH, Goldin BR, Gorbach SL, Hockerstedt KA, Watanabe S, Hamalainen EK, Markkanen MH, Makela TH, Wahala KT, Adlercreutz T. 1995. Soybean phytoestrogen intake and cancer risk. J Nutr 125: 757S-770S.
  7. Chen YC, Shen SC, Lin HY. 2003. Rutinoside at C7 attenuates the apoptosis-inducing activity of flavonoids. Biochem Pharmacol 66: 1139-1150. https://doi.org/10.1016/S0006-2952(03)00455-6
  8. Kanno S, Shouji A, Asou K, Ishikawa M. 2003. Effects of naringin on hydrogen peroxide-induced cytotoxicity and apoptosis in P388 cells. J Pharmacol Sci 92: 166-170. https://doi.org/10.1254/jphs.92.166
  9. Kumar MS, Unnikrishnan MK, Patra S, Murthy K, Srinivasan KK. 2003. Naringin and naringenin inhibit nitrite-induced methemoglobin formation. Pharmazie 58: 564-566.
  10. Lee SJ, Kim SJ, Han MS, Chang KS. 2005. Changes of rutin and quercetin in commercial Gochujang prepared with buckwheat flour during fermentation. J Korean Soc Food Sci Nutr 34: 509-512. https://doi.org/10.3746/jkfn.2005.34.4.509
  11. Maliar T, Jedinák A, KadrabovA J, Sturdík E. 2004. Structural aspects of flavonoids as trypsin inhibitors. Eur J Med Chem 39: 241-248. https://doi.org/10.1016/j.ejmech.2003.12.003
  12. Hou HJ, Chang KC. 2002. Interconversions of isoflavones in soybeans as affected by storage. J Food Sci 67: 2083-2089. https://doi.org/10.1111/j.1365-2621.2002.tb09505.x
  13. Arjmandi BH, Alekel L, Hollis BW, Amin D, Stacewicz- Sapuntzakis M, Guo P, Kukreja SC. 1996. Dietary soybean protein prevents bone loss in an ovariectomized rat model of osteoporosis. J Nutr 126: 161-167.
  14. Messina M. 1999. Soy, soy phytoestrogens (isoflavones), and breast cancer. Am J Clin Nutr 70: 574-575.
  15. Jo KS, Kim HK, Ha JH, Paek MH, Shin HS. 1990. Flavor compounds and storage stability of essential oil from garlic distilation. Korean J Food Sci Technol 22: 840-845.
  16. Stoll A, Seebeck E. 1949. Uber den enzymatischen Abbau des Alliins und die Eigenschaften der Alliinase. 2. Mitteilung Uber Allium-Substanzen. Helv Chim Acta 32: 197-205. https://doi.org/10.1002/hlca.19490320129
  17. O'Gara EA, Hill DJ, Maslin DJ. 2001. Activities of garlic oil, garlic powder, and their diallyl constituents against Helicobacter pyroli . Appl Environ Microbiol 66: 2269-2273.
  18. Ankri S, Miron T, Rabinkov A, Wilchek M, Mirelman D. 1997. Allicin from garlic strongly inhibits cysteine proteinases and cytopathic effects of Entamoeba histolytica. Antimicrob Agents Chemother 41: 2286-2288.
  19. Al-Delaimy KHS, Barakat MMF. 1971. Antimicrobial and preservative activity of garlic on fresh ground camel meat:I.-Effect of fresh ground garlic segments. J Sci Food Agric 22: 96-98. https://doi.org/10.1002/jsfa.2740220214
  20. Chun HJ. 1987. Function of effective components in garlic and their pharmacological effect. J Nutr Manage 1: 67-75.
  21. Song K, Milner JA. 1999. Heating garlic inhibits its ability to suppress 7,12-dimethylbenz(a)anthracene-induced DNA adduct formation in rat mammary tissue. J Nutr 129: 657-661.
  22. Hwang WI, Lee SD, Son HS, Baik NG, Ji RH. 1990. Effect of fresh garlic extract on the tumor cell growth and immunopotentiating activity. J Korean Soc Food Nutr 19:494-508.
  23. Jain RC. 1982. Effect of garlic on serum lipids, coagulability and fibrinolytic activity of blood. Am J Clin Nutr 30: 1380-1381.
  24. Jurdi-Haldeman D, MacNeil JH, Yared DM. 1987. Antioxidant activity of onion and garlic juices in stored cooked ground lamb. J Food Prot 50: 411-413.
  25. Fujio H, Hiyoshi A, Asari T, Suminoe K. 1969. Studies on the preventive method of lipid oxidation freeze-dried foods. Part III. Antioxidative effects of spices and vegetables. Nippon Shokuhin Kogyo Gakkaishi 16: 241-246. https://doi.org/10.3136/nskkk1962.16.241
  26. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  27. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  28. Oyaizu M. 1986. Studies on products of browning reaction: Antioxidant activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  29. Yang KH, Ahn JH, Kim HJ, Lee JY, You BR, Song JE, Oh HL, Kim NY, Kim MR. 2011. Properties of nutritional compositions and antioxidant activity of acorn crude starch by geographical origins. J Korean Soc Food Sci Nutr 40:928-934. https://doi.org/10.3746/jkfn.2011.40.7.928
  30. Lee GD, Chang HG, Kim HK. 1997. Antioxidative and nitrite-scavenging activities of edible mushrooms. Korean J Food Sci Technol 29: 432-436.

Cited by

  1. Antioxidant and Anti-inflammatory Activity of Medicinal Herbs Composites vol.49, pp.5, 2015, https://doi.org/10.14397/jals.2015.49.5.279
  2. 대두와 귀리를 첨가하여 영양을 강화시킨 기능성 시니어 혼합 두유 개발에 관한 연구 vol.33, pp.2, 2020, https://doi.org/10.9799/ksfan.2020.33.2.194
  3. Physicochemical Qualities and Physiological Activities of Black Soybeans by Cultivation Area and Cultivars vol.50, pp.1, 2013, https://doi.org/10.3746/jkfn.2021.50.1.29