DOI QR코드

DOI QR Code

Assessment of Climate Change Impact on Evapotranspiration and Soil Moisture in a Mixed Forest Catchment Using Spatially Calibrated SWAT Model

SWAT 모형을 이용한 미래 기후변화가 설마천 혼효림 유역의 증발산과 토양수분에 미치는 영향 평가

  • Ahn, So Ra (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Park, Geun Ae (Dept. of Civil Environmental Engineering, University of Washington) ;
  • Jang, Cheol Hee (Water Resources Research Division, Korea Institute of Construction Technology) ;
  • Kim, Seong Joon (Dept. of Civil and Environmental System Engineering, Konkuk University)
  • 안소라 (건국대학교 사회환경시스템공학과) ;
  • 박근애 (워싱턴대학교 사회환경공학과) ;
  • 장철희 (한국건설기술연구원 수자원연구실) ;
  • 김성준 (건국대학교 사회환경시스템공학과)
  • Received : 2013.02.18
  • Accepted : 2013.03.11
  • Published : 2013.06.30

Abstract

This study is to evaluate the future climate change impact on hydrological components in the Seolmacheon ($8.54km^2$) mixed forest catchment located in the northwest of South Korea using SWAT (Soil and Water Assessment Tool) model. To reduce the uncertainty, the model was spatially calibrated (2007~2008) and validated (2009~2010) using daily observed streamflow, evapotranspiration, and soil moisture data. Hydrological predicted values matched well with the observed values by showing coefficient of determination ($R^2$) from 0.74 to 0.91 for streamflow, from 0.56 to 0.71 for evapotranspiration, and from 0.45 to 0.71 for soil moisture. The HadGEM3-RA future weather data of Representative Concentration pathway (RCP) 4.5 and 8.5 scenarios of the IPCC (Intergovernmental Panel on Climate Change) AR5 (Assessment Report 5) were adopted for future assessment after bias correction of ground measured data. The future changes in annual temperature and precipitation showed an upward tendency from $0.9^{\circ}C$ to $4.2^{\circ}C$ and from 7.9% to 20.4% respectively. The future streamflow showed an increase from 0.6% to 15.7%, but runoff ratio showed a decrease from 3.8% to 5.4%. The future predicted evapotranspiration about precipitation increased from 4.1% to 6.8%, and the future soil moisture decreased from 4.3% to 5.5%.

본 연구는 SWAT 모형을 이용하여 설마천 혼효림 유역(8.54 $km^2$)을 대상으로 RCP (AR5) 기후변화 시나리오에 따른 수문순환 영향을 평가하였다. 모형의 불확실성을 효과적으로 줄이기 위해 설마천 유역의 2007년부터 실측된 유량, 증발산량 및 토양수분을 이용하여 모형의 보정(2007~2008) 및 검증(2009~2010)을 수행하였다. 모형의 보정 및 검증결과 유출량의 $R^2$가 0.74~0.91로 분석되었고, 증발산량은 0.56~0.71, 토양수분은 0.45~0.71로 분석되어 토양수분으로부터 증발산이 발생하고 이로 인해 유출까지 영향을 미치는 물수지 현상을 잘 재현하고 있음을 알 수 있었다. 미래 기후자료로 AR5 RCP 4.5, 8.5 시나리오에 대한 모의결과 값을 이용하였고, 사용된 모델은 한반도 전망자료를 지역기후모델을 이용하여 역학적 상세화하여 기상청에서 제공하는 HadGEM3-RA 모형이며 오차 보정하여 사용하였다. 기후변화 시나리오 분석 결과 두가지 시나리오 모두 미래 기온은 $0.9{\sim}4.2^{\circ}C$ 상승하고, 강수량은 7.9~20.4% 증가하였다. 또한 미래 유출량은 0.6~15.7% 증가한 반면에 유출률은 3.8~5.4% 감소하였고, 증발산비는 4.1~6.8% 증가, 토양수분은 4.3~5.5% 감소하였다.

Keywords

References

  1. Ahn, S.R., Lee, Y.J., Park. G.A., and Kim, S.J. (2008). "Analysis of Future Land Use and Climate Change Impact on Stream Discharge." Journal of Korea Society of Civil Engineers, Vol. 28, No. 2B, pp. 215-224.
  2. Ahn, S.R., Park, M.J., Park. G.A., and Kim, S.J. (2009). "Assessing Future Climate Change Impact on Hydrologic Components of Gyeongancheon Watershed." Journal of Korea Water Resources Association, Vol. l42, No. 1, pp. 33-50. https://doi.org/10.3741/JKWRA.2009.42.1.33
  3. Andersson, L., Wilk, J., Todd, M.C., Hughes, D.A., Earle, A., Kniveton, D., Layberry, R., and Savenije, H.G. (2006). "Impact of climate change and development scenarios on flow patterns in the Okavango River." Journal of Hydrology, Vol. 331, pp. 43-57. https://doi.org/10.1016/j.jhydrol.2006.04.039
  4. Arnold, J.G., and Allen, P.M. (1996). "Estimating hydrologic budgets for three Illinois watersheds." Journal of Hydrology, Vol. 176, No. 1, pp. 57-77. https://doi.org/10.1016/0022-1694(95)02782-3
  5. Bastidas, L.A., Gupta, H. Hsu, V. K-l., and Sorooshian, S. (2003). "Parameter, structure, and model performance evaluation for land-surface schemes." Water Science and Applications, Vol. 6, pp. 239-254. https://doi.org/10.1029/WS006p0239
  6. Bouraoui, F., Galbiati, L., and Bidoglio, G. (2002). "Climate change impacts on nutrient loads in the Yorkshire Ouse catchment (U.K.)." Hydrology and Earth System Sciences, Vol. 6, No. 2, pp. 197-209. https://doi.org/10.5194/hess-6-197-2002
  7. Bouraoui, F., Grizzetti, B., Granlund, K., Rekolainen, S., and Bidoglio, G. (2004). "Impact of climate change on the water cycled and nutrient losses in a Finnish catchment." Climate Change, Vol. 66, No. 1-2, pp. 109-126. https://doi.org/10.1023/B:CLIM.0000043147.09365.e3
  8. Carter, T.R., Hulme, M., and Lal, M. (1999). IPCCTGCIA Guidelines on the use of scenario data for climate impact and adaptation assessment, version 1, IPCC, Task Group on Scenarios for Impact Assessment.
  9. Doogers, P., and Aerts, J. (2005). "Adaptation strategies to climate change and climate variability: A comparative study between seven contrasting river basins." Physics and Chemistry of he earth. Vol. 30, pp. 339-346. https://doi.org/10.1016/j.pce.2005.06.015
  10. Galvan, L., Olias, M., Fernandez de Villaran, R., Domingo Santos, J.M., Nieto, J.M., Sarmiento, A.M., and Canovas, C.R. (2009). "Application of the SWAT model to an AMDaffected river (Meca River, SWSpain) estimation of transported pollutant load." Journal of Hydrology, Vol. 377, No. 3-4, pp. 445-454. https://doi.org/10.1016/j.jhydrol.2009.09.002
  11. Hong, W.Y., Park, M.J., Park, J.Y., Ha, R., Park. G.A., and Kim, S.J. (2009). "The Correlation Analysis Between SWAT Predicted Forest Soil Moisture and MODIS NDVI During Spring Season." Journal of Korea Society of Agricultural Engineers, Vol. 51, No. 2, pp. 7-14. https://doi.org/10.5389/KSAE.2009.51.2.007
  12. IPCC. (2007). Climate Change 2007: The Physical Science Basis, IPCC Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S.D., Qin, M., Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (Eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  13. Jha, M., Arnold, J.G., Gassman, P.W., Giorgi, F., and Gu, R. (2006). "Climate change sensitivity assessment on upper Mississippi River basin streamflows using SWAT." Journal of the American Water Resources Association, Vol. 42, No. 4, pp. 997-1015. https://doi.org/10.1111/j.1752-1688.2006.tb04510.x
  14. Joh, H.K., Lee, J.W., Park, M.J., Shin, H.J., Yi, J.E., Kim, G.S., Srinivasan, R., and Kim, S.J. (2011). "Assessing climate change impact on hydrological components of a small forest watershed through SWAT calibration of evapotranspiration and soil moisture." ASABE, Vol. 54, No. 5, pp. 1773-1781. https://doi.org/10.13031/2013.39844
  15. Joh, H.K., Lee, J.W., Shin, H.J., Park, G.A., and Kim, S.J. (2009). "Evaluation of Evapotranspiration and Soil Moisture of SWAT Simulation for Mixes Forest in the Seolmacheon Catchment." Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 4, pp. 289-297.
  16. Kuczera, G., and Mroczkowski, M. (1998). "Assessment of hydrological parameter uncertainty and the worth of multi-response data."Water Resources Research, Vol. 34, pp. 1481-1489. https://doi.org/10.1029/98WR00496
  17. Kwon, H.J., Lee, J.H., Lee, Y.K., Lee, J.W., Jung, S.W., and Kim, J. (2009). "Seasonal Variations of Evapotranspiration Observed in a Mixed forest in the Seolmacheon Catchment." Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 1, pp. 39-47. https://doi.org/10.5532/KJAFM.2009.11.1.039
  18. Lee, Y.J., Ahn, S.R., Kang, B.S., and Kim, S.J. (2008). "Assessment of Future Climate and Land Use Change on Hydrology and Stream Water Quality of Anseongcheon Watershed Using SWAT Model (II)." Journal of Korea Society of Civil Engineers, Vol. 8, No. 6B, pp. 665-673.
  19. Marshall, E., and Randhir, T. (2008). "Effect of climate change on watershed system: A regional analysis." Climate Change, Vol. 89, No. 3-4, pp. 263-280. https://doi.org/10.1007/s10584-007-9389-2
  20. Merritt, W.S., Alila, Y., Barton, M., Taylor, B., Cohen, S., and Neilsen, D. (2006). "Hydrologic response to scenario of climate change in sub watersheds of the Okanagan basin, British Columbia." Journal of Hydrology, Vol. 326, pp. 79-108. https://doi.org/10.1016/j.jhydrol.2005.10.025
  21. Muleta, M.K., and Nicklow, J.W. (2005). "Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model." Journal of Hydrology, Vol. 306, No. 1-4, pp. 127-145. https://doi.org/10.1016/j.jhydrol.2004.09.005
  22. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models: Part I. A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  23. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2001). "Soil andWater Assessment Tool; the theoretical documentation." U.S Agricultural Research Service, pp. 340-367.
  24. Park, J.Y., Park, M.J., Ahn, S.R., and Kim, S.J. (2009). "Watershed Modeling for Assessing Climate Change Impact on Stream Water Quality of Chungju Dam Watershed." Journal of Korea Water Resources Association, Vol. 42, No. 10, pp. 877-889. https://doi.org/10.3741/JKWRA.2009.42.10.877
  25. Park, J.Y., Park, M.J., Ahn, S.R., Park, G.A., Yi, J.E., Kim, G.S., Srinivasan, R., Kim, S.J. (2011). "Assessment of future climate change impacts on water quantity and quality for a mountainous dam watershed using SWAT." ASABE, Vol. 54, No. 5, pp. 1725-1737. https://doi.org/10.13031/2013.39843
  26. Park, G.A., Ahn, S.R., Park, M.J., and Kim, S.J. (2010). "Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (II) −Calibration, Validation and Application of the Model." Journal of Korea Society of Civil Engineers, Vol. 30, No. 2B, pp. 121-135.
  27. Refsgaard, J.C., and Storm, B. (1996). Storm construction calibration and validation of hydrological models. Distributed Hydrological Modeling, M. B. Abbott and Refsgaard (Eds.), Kluwer Academic Publishers, pp. 41-54.
  28. Seibert, J., and McDonnell, J.J. (2003). "The quest for an improved dialog between modeler and experimentalist." Water Science and Applications, Vol. 6, pp. 301-316. https://doi.org/10.1029/WS006p0301
  29. Shin, H.J., Park, M.J., and Kim, S.J. (2012). "Evaluation of Forest Watershed Hydro-Ecology using Measured Data and RHESSys Model-For the Seolmacheon Catchment." Journal of Korea Water Resources Association, Vol. 45, No. 12, pp. 1293-1307. https://doi.org/10.3741/JKWRA.2012.45.12.1293
  30. Varanou, E., Gkouvatsou, E., Baltas, E., and Mimikou, M. (2002). "Quantity and quality integrated catchment modelling under climatic change with use of Soil and Water Assessment Tool model." Journal of Hydrologic Engineering, Vol. 7, No. 3, pp. 228-244. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:3(228)
  31. Viner, D., and Mayer, L. (1994). Climate change scenarios of impact studies in the UK, Report, Contract No PECD 7/12/96, CRU, Norwich, University of East Anglia.
  32. Zhang, X., Srinivasan, R., and Hao, F. (2007). "Predicting hydrologic response to climate change in the Luohe River basin using the SWAT model." ASABE, Vol. 50, No. 3, pp. 901-910. https://doi.org/10.13031/2013.23154

Cited by

  1. Large Scale SWAT Watershed Modeling Considering Multi-purpose Dams and Multi-function Weirs Operation - For Namhan River Basin - vol.58, pp.4, 2016, https://doi.org/10.5389/KSAE.2016.58.4.021
  2. Assessing Climate Change Impact on Hydrological Components of Yongdam Dam Watershed Using RCP Emission Scenarios and SWAT Model vol.56, pp.3, 2014, https://doi.org/10.5389/KSAE.2014.56.3.019
  3. Landuse oriented Water Balance Analysis Method by the Hydrological Model BAGLUVA based on Soil and Vegetation vol.43, pp.4, 2015, https://doi.org/10.9715/KILA.2015.43.4.098
  4. Analysis of Spatiotemporal Changes in Groundwater Recharge and Baseflow using SWAT and BFlow Models vol.30, pp.5, 2014, https://doi.org/10.15681/KSWE.2014.30.5.549
  5. Assessment of Climate and Land Use Change Impacts on Watershed Hydrology for an Urbanizing Watershed vol.35, pp.3, 2015, https://doi.org/10.12652/Ksce.2015.35.3.0567
  6. Monitoring of soil water content and infiltration rate by rainfall in a water curtain cultivation area vol.52, pp.3, 2016, https://doi.org/10.14770/jgsk.2016.52.3.221
  7. Analysis of Reference Evapotranspiration Change in Korea by Climate Change Impact vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.71