DOI QR코드

DOI QR Code

Influence of Silica Fume on Strength Properties of Alkali-Activated Slag Mortar

실리카 퓸이 알칼리 활성화 슬래그 모르타르의 강도특성에 미치는 영향

  • Kim, Tae-Wan (Research Institute of Industrial Technology (RIIT), Pusan National University)
  • 김태완 (부산대학교 생산기술연구소)
  • Received : 2012.11.13
  • Accepted : 2013.03.06
  • Published : 2013.06.30

Abstract

This paper reports the results of an investigation into the effects of silica fume on strength properties of alkali-activated slag cement (AASC) with water-binder (W/B) ratio and replacement ratio of silica fume content. The W/B ratio varied between 0.50 and 0.60 at a constant increment of 0.05. The silica fume content varied from 0% to 50% by weight of slag. The activators was used sodium hydroxide (NaOH) and the dosage of activator was 3M. The strength development with W/B ratio has been studied at different ages of 1, 3, 7 and 28 days. For mixes of AASC mortars with varying silica fume content, the flow values were lower than the control mixes (without silica fume). The flow value was decrease as the content of silica fume increase. This is because the higher surface areas of silica fume particles increase the water requirement. The analysis of these results indicates that, increasing the silica fume content in AASC mortar also increased the compressive strength. Moreover, the strength decreases with the W/B ratios increases. This is because the particle sizes of silica fume are smaller than slag. The high compressive strength of blended slag-silica fume mortars was due to both the filler effect and the activated reaction of silica fume evidently giving the mortar matrix a denser microstructure, thereby resulting in a significant gain in strength.

이 연구는 물-결합재(W/B) 비에 따른 실리카 퓸이 알칼리 활성화 슬래그 시멘트(AASC)에 미치는 유동성과 강도 특성에 대한 연구이다. W/B비는 0.50에서 0.60까지 0.05 단위로 일정하게 변화시켰다. 실리카 퓸은 고로슬래그 중량의 0%에서 50%까지 치환시켰다. 활성화제는 수산화나트륨(NaOH)를 사용하였고, 농도는 3M로 하였다. W/B 비에 따른 강도는 1, 3, 7 그리고 28일을 측정하였다. 유동성 측정 결과는 실리카 퓸의 치환율이 증가할수록 감소하였다. 압축강도는 실리카 퓸의 치환율이 증가할수록 증가하였다. 또한 W/B 비가 증가할수록 모든 재령에서 강도는 감소하였다. 실리카 퓸은 W/B 비와 실리카 퓸의 치환율에 따라서 활성화 반응을 증대시켜 강도를 증가시키는 것을 알 수 있었다.

Keywords

References

  1. Yang, K. H. and Song, J. G., "The Properties and Applications of Alkali-Activated Concrete with No Cement," Magazine of the Korea Concrete Institute, Vol. 19, No. 2, 2007, pp. 42-48.
  2. Park, C. W., Sim, J. S., Kang, T. S., and Park, S. E., "Environmental Assessment od Shotcrete Using Recycled Industrial By-Products (Fly Ash) and Silica Fume," Journal of the Korean Society of Civil Engineers, Vol. 30, No. 3C, 2010, pp. 159-165.
  3. Min, J. W., "The Statistical Hypothesis Verification to Influence of Addition of Metakaolin and Silica Fume on Compressive Strength and Chloride Ion Penetration of High Strength Concrete," Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 15, No. 1, 2011. pp. 215-225. https://doi.org/10.11112/jksmi.2011.15.1.215
  4. Jeon, J. K., Moon, H. Y., Ann, K. Y., Kim, H. S., and Kim, Y. B., "Effect of Ground Granulated Blast Furnace Slag, Pulverized Fuel Ash, Silica Fume on Sulfuric Acid Corrosion Resistance of Cement Matrix," International Journal of Concrete Structures and Materials, Vol. 18, No. 2E, 2006, pp. 97-102. https://doi.org/10.4334/IJCSM.2006.18.2E.097
  5. Park, C. B., Kim, H. S., Jeon, J. Y., Kim, E. K., and Ryu, D. H., "Properties of Ternary or Quaternary High Strength Concrete Using Silica Fume & Meta Kaolin," Journal of the Korea Concrete Institute, Vol. 20, No. 3, 2008, pp. 307-315. https://doi.org/10.4334/JKCI.2008.20.3.307
  6. Choi, P. G., Shim, D. S., and Lee, B. H., "Characteristics of Ternary Blended Cement Concrete Using Fly Ash and Silica Fume for Post-Tensioned Concrete Pavement Application," Journal of Korean Society of Hazard Mitigation, Vol. 9, No. 3, 2009, pp. 41-47.
  7. Wongkeo, W., Thongsanitgarn, P., and Chaipanich, A., "Compressive Strength and Drying Shrinkage of Fly Ash-Bottom Ash-Silica Fume Multi-Blended Cement Mortars," Materials & Design, Vol. 36, 2012, pp. 655-662. (doi: http://dx.doi.org/10.1016/j.matdes.2011.11.043)
  8. Nochaiya, T., Wongkeo, W., and Chaipanich, A., "Utilization of Fly Ash with Silica Fume and Properties of Portland Cement- Fly Ash-Silica Fume Concrete," Fuel, Vol. 89, Issue 3, 2010, pp. 768-774. (doi: http://dx.doi.org/10.1016/j.fuel. 2009.10.003)
  9. Thomas, M. D. A., Shehata, M. H., Shashiprakash, S. G., Hopkins, D. S., and Cail, K., "Use of Ternary Cementitious Systems Containing Silica Fume and Fly Ash in Concrete," Cement and Concrete Research, Vol. 29, Issue 8, 1999, pp. 1207-1214. (doi: http://dx.doi.org/10.1016/S0008-8846(99) 00096-4)
  10. Lee, S. T., "Microstructural Investigation on the Deterioration of Silica Fume Blended Cement Matrix Under Magnesium Sulfate Attack," Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 12, No. 6, 2008, pp. 55-62.
  11. Kim, C. G., Takashi Miura, and Kang, W. H., "Effectiveness of Silica Fume on Alkali-Silica Reaction in the Presence of Sodium Chloride and Sea Water," Journal of the Korea Concrete Institute, Vol. 10, No. 5, 1998, pp. 129-137.
  12. Guneyisi, E., Gesoglu, M., Karaoglu, S., and Mermerdas, K., "Strength, Permeability and Shrinkage Cracking of Silica Fume and Metakaolin Concretes," Construction and Building Materials, Vol. 34, 2012, pp. 120-130. https://doi.org/10.1016/j.conbuildmat.2012.02.017
  13. Kim, H. T., "The Characteristics and Application of Silica Fume and Silica Fume Concrete," Magazine of the Korea Concrete Institute, Vol. 3, No. 3, 1991, pp. 23-30.
  14. Mazloom, M., Ramezanianpour, A. A., and Brooks, J. J., "Effect of Silica Fume on Mechanical Properties of High-Strength Concrete," Cement and Concrete Composites, Vol. 26, Issue 4, 2004, pp. 347-357. (doi: http://dx.doi.org/10.1016/S0958-9465(03)00017-9)
  15. Park, S. B. and Yoon, E. S., "Experimental Study on the Mechanical Properties of Silica Fume and Fly Ash Cement Composites," Journal of the Korea Concrete Institute, Vol. 6, No. 5, 1994, pp. 158-170.
  16. Lee, S. T. and Lee, S. H., "Mechanical Properties and Durability of Cement Concrete Incorporating Silica Fume," Journal of the Korean Ceramic Society, Vol. 47, No. 5, 2010, pp. 412-418. https://doi.org/10.4191/KCERS.2010.47.5.412
  17. Song, K. I., Lee, B. Y., Hong, G. H., Gong, M. H., and Song, J. K., "Effects of Basicity on the Carbonation Characteristics of Alkali-Activated Slag Mortar," Journal of the Korea Concrete Institute, Vol. 24, No. 5, 2012, pp. 577-584. (doi: http://dx.doi.org/10.4334/JKCI.2012.24.5.577)
  18. Law, D. W., Adam, A. A., Molyneaus, T. K., and Patnaikuni, I., "Durability Assessment of Alkali Activated Slag (AAS) Concrete," Materials and Structures, Vol. 45, 2012, pp. 1425-1437. https://doi.org/10.1617/s11527-012-9842-1
  19. Barbhuiya, S. A., Gbagbo, J. K., Russell, M. I., and Basheer, P. A. M., "Properties of Fly Ash Concrete Modified with Hydrated Lime and Silica Fume," Construction and Building Materials, Vol. 23, 2009, pp. 3233-3239. (doi: http://dx.doi. org/10.1617/s11527.012.9842.1)
  20. Shi, C., Krivenko, P. V., and Roy, D. M., Alkali-Activated Cements and Concrete, Taylor & Francis, 2006, pp. 30-42.