References
- Alzari, P. M., and R. Dominguez. 1996. The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum. Structure 4:265-275. https://doi.org/10.1016/S0969-2126(96)00031-7
- Bazan, J. F. 1990. Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. USA 87: 6934-6938. https://doi.org/10.1073/pnas.87.18.6934
- Brick, D. J., M. J. Brumlik, J. T. Buckley, J.-X. Cao, P. C. Davies, S. Misra, T. J. Tranbarger, and C. Upton. 1995. A new family of lipolytic plant enzymes with members in rice, arabidopsis and maize. FEBS Lett. 377:475-480. https://doi.org/10.1016/0014-5793(95)01405-5
- Bryant, M. P., and N. Small. 1956. The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J. Bacteriol. 72:16-21.
-
Castillo, R. M., K. Mizuguchi, V. Dhanaraj, A. Albert, T. L. Blundell, and A. G. Murzin. 1999. A six-stranded double-psi
${\beta}$ barrel is shared by several protein superfamilies. Structure 7: 227-236. https://doi.org/10.1016/S0969-2126(99)80028-8 - Chow, J. M., and J. B. Russell. 1992. Effect of pH and monensin on glucose transport by Fibrobacter succinogenes, a cellulolytic ruminal bacterium. Appl. Environ. Microbiol. 58: 1115-1120.
- Dominguez, R., H. Souchon, M.-B. Lascombe, and P. M. Alzari. 1996. The crystal structure of a family 5 endoglucanase mutant in complexed and uncomplexed forms reveals an induced fit activation mechanism. J. Mol. Biol. 257:1042-1051. https://doi.org/10.1006/jmbi.1996.0222
- Ferrer, M., Olga V. Golyshina, Tatyana N. Chernikova, Amit N. Khachane, Dolores Reyes-Duarte, Vitor A. P. Martins Dos Santos, Carsten Strompl, Kieran Elborough, Graeme Jarvis, Alexander Neef, Michail M. Yakimov, Kenneth N. Timmis, and Peter N. Golyshin. 2005. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ. Microbiol. 7:1996-2010. https://doi.org/10.1111/j.1462-2920.2005.00920.x
- Galagan, J. E., S. E. Calvo, C. Cuomo, L.-J. Ma, J. R. Wortman, S. Batzoglou, S.-I. Lee, M. Bastuerkmen, C. C. Spevak, J. Clutterbuck, V. Kapitonov, J. Jurka, C. Scazzocchio, M. L. Farman, J. Butler, S. Purcell, S. Harris, G. H. Braus, and B. W. Birren. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature. 438:1105-1115. https://doi.org/10.1038/nature04341
- Guan, L. L., J. D. Nkrumah, J. A. Basarab, and S. S. Moore. 2008. Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle's feed efficiency. FEMS Microbiol. Lett. 288:85-91. https://doi.org/10.1111/j.1574-6968.2008.01343.x
- Hegarty, R. S. 1999. Reducing rumen methane emissions through elimination of rumen protozoa. Aust. J. Agric. Res. 50:1321-1328. https://doi.org/10.1071/AR99008
- Heinrichova, K., M. Wojciechowicz, and A. Ziolecki. 1989. The pectinolytic enzyme of Selenomonas ruminantium. J. Appl. Microbiol. 66:169-174. https://doi.org/10.1111/j.1365-2672.1989.tb02466.x
- Hess, M., A. Sczyrba, R. Egan, T. W. Kim, H. Chokhawala, G. Schroth, S. Luo, D. S. Clark, F. Chen, T. Zhang, R. I. Mackie, L. A. Pennacchio, S. G. Tringe, A. Visel, T. Woyke, Z. Wang, and E. M. Rubin. 2011. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science (New York, NY) 331:463-467. https://doi.org/10.1126/science.1200387
- Janssen, R., J. Smeitink, R. Smeets, and L. van den Heuvel. 2002. CIA30 complex I assembly factor: a candidate for human complex I deficiency? Hum. Genet. 110:264-270. https://doi.org/10.1007/s00439-001-0673-3
- Johnson, P. E., M. D. Joshi, P. Tomme, D. G. Kilburn, and L. P. McIntosh. 1996. Structure of the N-terminal cellulose-binding domain of Cellulomonas fimi CenC determined by nuclear magnetic resonance spectroscopy. Biochemistry 35:14381-14394. https://doi.org/10.1021/bi961612s
- Kitago, Y., S. Karita, N. Watanabe, M. Kamiya, T. Aizawa, K. Sakka, and I. Tanaka. 2007. Crystal structure of Cel44A, a glycoside hydrolase family 44 endoglucanase from Clostridium thermocellum. J. Biol. Chem. 282:35703-35711. https://doi.org/10.1074/jbc.M706835200
- Kornblihtt, A. R., K. Umezawa, K. Vibe-Pedersen, and F. Baralle. 1985. Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. EMBO J. 4:1755-1759.
- Kosugi, A., Y. Amano, K. Murashima, and R. H. Doi. 2004. Hydrophilic domains of scaffolding protein CbpA promote glycosyl hydrolase activity and localization of cellulosomes to the cell surface of Clostridium cellulovorans. J. Bacteriol. 186: 6351-6359. https://doi.org/10.1128/JB.186.19.6351-6359.2004
- Krause, D. O., T. G. Nagaraja, A. D. G. Wright, and T. R. Callaway. 2013. Board-invited review: Rumen microbiology: Leading the way in microbial ecology. J. Anim. Sci. 91:331-341. https://doi.org/10.2527/jas.2012-5567
- Little, E., P. Bork, and R. F. Doolittle. 1994. Tracing the spread of fibronectin type III domains in bacterial glycohydrolases. J. Mol. Evol. 39:631-643. https://doi.org/10.1007/BF00160409
- Lytle, B. L., B. F. Volkman, W. M. Westler, and J. Wu. 2000. Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy. Arch. Biochem. Biophys. 379:237-244. https://doi.org/10.1006/abbi.2000.1882
- McAllister, T. A., H. D. Bae, G. A. Jones, and K-J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-3018.
- Molgaard, A., S. Kauppinen, and S. Larsen. 2000. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure 8:373-383. https://doi.org/10.1016/S0969-2126(00)00118-0
- McKain, N., R. J. Wallace, and N. D. Watt. 1992. Selective isolation of bacteria with dipeptidyl aminopeptidase type I activity from the sheep rumen. FEMS Microbiol. Lett. 95:169-173. https://doi.org/10.1111/j.1574-6968.1992.tb05361.x
- Mesnage, S., T. Fontaine, T. Mignot, M. Delepierre, M. Mock, and A. Fouet. 2000. Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J. 19:4473-4484. https://doi.org/10.1093/emboj/19.17.4473
- Mizuguchi, K., V. Dhanaraj, T. L. Blundell, and A. G. Murzin. 1999. N-ethylmaleimide-sensitive fusion protein (NSF) and CDC48 confirmed as members of the double-psi beta-barrel aspartate decarboxylase/formate dehydrogenase family. Structure (London, England: 1993) 7:R215-R216. https://doi.org/10.1016/S0969-2126(99)80169-5
- Moon, C. D., D. M. Pacheco, W. J. Kelly, S. C. Leahy, D. Li, J. Kopecny, and G. T. Attwood. 2008. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. Intl J. Syst. Evol. Microbiol. 58:2041-2045. https://doi.org/10.1099/ijs.0.65845-0
- Mosbah, A., A. Bela ch, O. Bornet, J.-P. Belaich, B. Henrissat, and H. Darbon. 2000. Solution structure of the module X2_1 of unknown function of the cellulosomal scaffolding protein CipC of Clostridium cellulolyticum. J. Mol. Biol. 304:201-217. https://doi.org/10.1006/jmbi.2000.4192
- Peng, Y., Henry C. M. Leung, S. M. Yiu, and Francis Y. L. Chin. 2011. Meta-IDBA: a de Novo assembler for metagenomic data. Bioinformatics 27:i94-i101. https://doi.org/10.1093/bioinformatics/btr216
- Poole, D. M., E. Morag, R. Lamed, E. A. Bayer, G. P. Hazlewood, and H. J. Gilbert. 1992. Identification of the cellulose-binding domain of the cellulosome subunit S1 from Clostridium thermocellum YS. FEMS Microbiol. Lett. 99:181-186. https://doi.org/10.1111/j.1574-6968.1992.tb05563.x
- Ross, E. M., P. J. Moate, C. R. Bath, S. E. Davidson, T. I. Sawbridge, K. M. Guthridge, B. G. Cocks, and B. J. Hayes. 2012. High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing. BMC Genet. 13:53.
- Shoham, Y., R. Lamed, and E. A. Bayer. 1999. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7:275-281. https://doi.org/10.1016/S0966-842X(99)01533-4
- Takase, I., F. Ishino, M. Wachi, H. Kamata, M. Doi, S. Asoh, H. Matsuzawa, T. Ohta, and M. Matsuhashi. 1987. Genes encoding two lipoproteins in the leuS-dacA region of the Escherichia coli chromosome. J. Bacteriol. 169:5692-5699.
- Tews, I., A. Perrakis, A. Oppenheim, Z. Dauter, K. S. Wilson, and C. E. Vorgias. 1996. Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease. Nat. Struct. Biol. 3:638-648. https://doi.org/10.1038/nsb0796-638
- Tormo, J., R. Lamed, A. J. Chirino, E. Morag, E. A. Bayer, Y. Shoham, and T. A. Steitz. 1996. Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J. 15:5739-5751.
- Toyoda, A., W. Iio, M. Mitsumori, and H. Minato. 2009. Isolation and identification of cellulose-binding proteins from sheep rumen contents. Appl. Environ. Microbiol. 75:1667-1673. https://doi.org/10.1128/AEM.01838-08
- Van Gylswyk, N., and J. Van Der Toorn. 1986. Enumeration of Bacteroides succinogenes in the rumen of sheep fed maize-straw diets. FEMS Microbiol. Lett. 38:205-209.
- Walker, J. E., J. M. Arizmendi, A. Dupuis, I. M. Fearnley, M. Finel, S. M. Medd, S. J. Pilkington, M. J. Runswick, and J. M. Skehel. 1992. Sequences of 20 subunits of NADH: ubiquinone oxidoreductase from bovine heart mitochondria: Application of a novel strategy for sequencing proteins using the polymerase chain reaction. J. Mol. Biol. 226:1051-1072. https://doi.org/10.1016/0022-2836(92)91052-Q
- Wortman, J. R., J. M. Gilsenan, V. Joardar, J. Deegan, J. Clutterbuck, M. R. Andersen, D. Archer, M. Bencina, G. Braus, P. Coutinho, H. von Dohren, J. Doonan, A. J. Driessen, P. Durek, E. Espeso, E. Fekete, M. Flipphi, C. G. Estrada and G. Turner. 2009. The 2008 update of the Aspergillus nidulans genome annotation: a community effort. Fungal Genet. Biol. 46:S2-13. https://doi.org/10.1016/j.fgb.2008.12.003
- Xu, G.-Y., E. Ong, N. R. Gilkes, D. G. Kilburn, D. Muhandiram, M. Harris-Brandts, J. P. Carver, L. E. Kay, and T. S. Harvey. 1995. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry 34:6993-7009. https://doi.org/10.1021/bi00021a011
- Zhou, J., B. Copeland, C. Zhang, Z. Liu, S. Bhatti, R. Sauve, and S. Zhou. 2011. Identification of prokaryotic organisms in goat rumen based on metagenomic DNA sequences. J. Res. Biol. 6: 451-455.
Cited by
- Impact of levels of total digestible nutrients on microbiome, enzyme profile and degradation of feeds in buffalo rumen vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0172051
- Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development vol.36, pp.6, 2016, https://doi.org/10.3109/07388551.2015.1083939
- Metagenomic insights into lignocellulose-degrading genes through Illumina-based de novo sequencing of the microbiome in Vietnamese native goats’ rumen vol.64, pp.3, 2018, https://doi.org/10.2323/jgam.2017.08.004
- Metagenomic analysis of bacterial community structure and diversity of lignocellulolytic bacteria in Vietnamese native goat rumen vol.31, pp.5, 2018, https://doi.org/10.5713/ajas.17.0174
- Symposium review: Mining metagenomic and metatranscriptomic data for clues about microbial metabolic functions in ruminants 1 vol.101, pp.6, 2018, https://doi.org/10.3168/jds.2017-13356
- Metagenomic Analyses of Microbial and Carbohydrate-Active Enzymes in the Rumen of Holstein Cows Fed Different Forage-to-Concentrate Ratios vol.10, pp.None, 2013, https://doi.org/10.3389/fmicb.2019.00649
- Genome-wide identification and expression analysis of the AAAP family in Fragaria vesca vol.34, pp.1, 2013, https://doi.org/10.1080/13102818.2020.1806107
- Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass vol.104, pp.2, 2020, https://doi.org/10.1007/s00253-019-10239-w
- Metagenomic Analyses of Microbial and Carbohydrate-Active Enzymes in the Rumen of Dairy Goats Fed Different Rumen Degradable Starch vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.01003
- Microbial community analysis using high-throughput sequencing technology: a beginner’s guide for microbiologists vol.58, pp.3, 2013, https://doi.org/10.1007/s12275-020-9525-5
- Brisket Disease Is Associated with Lower Volatile Fatty Acid Production and Altered Rumen Microbiome in Holstein Heifers vol.10, pp.9, 2020, https://doi.org/10.3390/ani10091712
- Some characters of bacterial cellulases in goats' rumen elucidated by metagenomic DNA analysis and the role of fibronectin 3 module for endoglucanase function vol.34, pp.5, 2021, https://doi.org/10.5713/ajas.20.0115
- Understanding the Role of Prevotella Genus in the Digestion of Lignocellulose and Other Substrates in Vietnamese Native Goats’ Rumen by Metagenomic Deep Sequencing vol.11, pp.11, 2021, https://doi.org/10.3390/ani11113257
- Identification of the molecular mechanisms underlying brisket disease in Holstein heifers via microbiota and metabolome analyses vol.11, pp.1, 2013, https://doi.org/10.1186/s13568-021-01246-0