DOI QR코드

DOI QR Code

Development of Genetic Markers for Triploid Verification of the Pacific Oyster, Crassostrea gigas

  • Received : 2013.01.19
  • Accepted : 2013.04.02
  • Published : 2013.07.01

Abstract

The triploid Pacific oyster, which is produced by mating tetraploid and diploid oysters, is favored by the aquaculture industry because of its better flavor and firmer texture, particularly during the summer. However, tetraploid oyster production is not feasible in all oysters; the development of tetraploid oysters is ongoing in some oyster species. Thus, a method for ploidy verification is necessary for this endeavor, in addition to ploidy verification in aquaculture farms and in the natural environment. In this study, a method for ploidy verification of triploid and diploid oysters was developed using multiplex polymerase chain reaction (PCR) panels containing primers for molecular microsatellite markers. Two microsatellite multiplex PCR panels consisting of three markers each were developed using previously developed microsatellite markers that were optimized for performance. Both panels were able to verify the ploidy levels of 30 triploid oysters with 100% accuracy, illustrating the utility of microsatellite markers as a tool for verifying the ploidy of individual oysters.

Keywords

References

  1. Alam, M., K. I. Han, D. H. Lee, J. H. Ha, and J. J. Kim. 2012. Estimation of effective population size in the Sapsaree: a Korean native dog (Canis familiaris). Asian-Aust. J. Anim. Sci. 25:1063-1072. https://doi.org/10.5713/ajas.2012.12048
  2. Allen, Jr. S. K., and S. L. Downing. 1986. Performance of triploid pacific oyster, Crassostrea gigas. I. Survival, growth, glycogen content, and sexual maturation in yearlings. J. Exp. Mar. Bil. Ecol. 102:197-208. https://doi.org/10.1016/0022-0981(86)90176-0
  3. Beaumont, A. R., and J. E. Fairbrother. 1991. Ploidy manipulation in molluscan shellfish: a review. J. Shellfish Res. 10:1-18.
  4. Chambers, G. K. and E. S. MacAvoy. 2000. Microsatellites: consensus and controversy. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 126:455-476. https://doi.org/10.1016/S0305-0491(00)00233-9
  5. Dadi, H., J.-J. Kim, D. Yoon, and K. S. Kim. 2012a. Evaluation of single nucleotide polymorphisms (SNPs) genotyped by the Illumina bovine SNP50K in cattle focusing on Hanwoo breed. Asian-Aust. J. Anim. Sci. 25:28-32. https://doi.org/10.5713/ajas.2011.11232
  6. Dadi, H., S.-H. Lee, K. S. Jung, J. W. Choi, M.-S. Ko, Y.-J. Han, J.-J. Kim, and K. S. Kim. 2012b. Effect of population reduction on mtDNA diversity and demographic history of Korean cattle populatioins. Asian-Aust. J. Anim. Sci. 25:1223-1228. https://doi.org/10.5713/ajas.2012.12122
  7. Durand, P., K. T. Wada, and A. Komaru. 1990. Triploidy induction by caffeine-heat shock treatments in the Japanese pearl oyster Pinctada fucata martensii. Nippon Suisan Gakkaishi 56:1423-1425. https://doi.org/10.2331/suisan.56.1423
  8. Gardner, C., G. B. Maguire, and G. N. Kent. 1996. Studies on triploid oysters in Australia: VII. Assessment of two methods for determining triploidy: adductor muscle diameter, and nuclear size. J. Shellfish. Res. 15:609-615.
  9. Gerard, A., Y. Naciri, J. M. Peignon, C. Ledu, P. Phelipot, C. Noiret, I. Peudenire, and H. Grizel. 1994. Image analysis: a new method for estimating triploidy in commercial bivalves. Aquacult. Fish. Manage. 25:697-708.
  10. Guo. X., and S. K. Allen, Jr. 1994a. Sex determination and polyploid gigantism in the dwarf-surf clam, Mulinia lateralis Say. Genetics 138:1199-1206.
  11. Guo. X., and S. K. Allen, Jr. 1994b. Reproductive potential and genetics of triploid Pacific oysters, Crassostrea gigas (Thunberg). Biol. Bull. 187:309-318. https://doi.org/10.2307/1542288
  12. Guo. X., and S. K. Allen, Jr. 1994c. Viable tetraploids in the Pacific oyster (Crassostrea gigas Thunberg) produced by inhibiting polar body I in eggs from triploids. Mol. Mar. Biol. Biotechnol. 3:42-50.
  13. Guo, X., G. A. DeBrosse, and S. K. Allen, Jr. 1996. All-triploid Pacific oysters (Crassostrea gigas Thunberg) produced by mating tetraploids and diploids. Aquaculture 142:149-161. https://doi.org/10.1016/0044-8486(95)01243-5
  14. Guo, X. 1999. Superior growth as a general feature of triploid shellfish: evidence and possible causes. J. Shellfish. Res. 18: 266-267.
  15. Harrell, R. M., W. van Heukelem, and J. H. Kerby. 1995. Triploid induction validation techniques: a comparison of karyotyping, flow cytometry, particle size analysis and staining nucleolar organizer regions. Aquaculture 137:159-160. https://doi.org/10.1016/0044-8486(96)83557-5
  16. Li, G., S. Hubert, K. Bucklin, C. Ribes, and D. Hedgecock. 2003. Characterization of 79 microsatellite DNA markers in the Pacific oyster Crassostrea gigas. Mol. Ecol. Notes 3:228-232. https://doi.org/10.1046/j.1471-8286.2003.00406.x
  17. Magoulas, A., B. Gjetvaj, V. Terzoglou, and E. Zouros. 1998. Three polymorphic microsatellites in the Japanese oyster, Crassostrea gigas (Thunberg). Anim. Genet. 29:69-70.
  18. McCombie, H., C. Ledu, P. Phelipot, S. Lapegue, and P. Boudry. 2005. A complementary method for production of tetraploid Crassostrea gigas using crosses between diploids and tetraploids with cytochalasin b treatments. Mar. Biotechnol. 7:318-330. https://doi.org/10.1007/s10126-004-0440-2
  19. Nell, J. A. 2002. Farming triploid oysters. Aquaculture 210:69-88. https://doi.org/10.1016/S0044-8486(01)00861-4
  20. Piferrer, F., A. Beaumont, J. C. Falguiere, M. Flajshans, P. Haffray, and L. Colombo. 2009. Polyploid fish and shellfish; production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293:125-156. https://doi.org/10.1016/j.aquaculture.2009.04.036
  21. Sekino, M., M. Hamaguchi, F. Aranishi, and K. Okoshi. 2003. Development of novel microsatellite DNA markers from the Pacific oyster Crassostrea gigas. Mar. Biotechnol. 5:227-233. https://doi.org/10.1007/s10126-002-0104-z
  22. Slabbert, R., N. Prins, and D. Brink. 2010. A microsatellite panel for triploid verification in the abalone Haliotis midae. Afr. J. Mar. Sci. 32:259-264. https://doi.org/10.2989/1814232X.2010.501570

Cited by

  1. Development of genomic microsatellite multiplex PCR using dye-labeled universal primer and its validation in pedigree analysis of Pacific oyster (Crassostrea gigas) vol.16, pp.1, 2017, https://doi.org/10.1007/s11802-017-3121-2
  2. Heavy metal concentrations in diploid and triploid oysters (Crassostrea gigas) from three farms on the north-central coast of Sinaloa, Mexico vol.189, pp.11, 2017, https://doi.org/10.1007/s10661-017-6223-9
  3. Editorial: Molecular Physiology in Molluscs vol.10, pp.None, 2013, https://doi.org/10.3389/fphys.2019.01131
  4. Integrated Proteomic and Transcriptomic Analysis of Gonads Reveal Disruption of Germ Cell Proliferation and Division, and Energy Storage in Glycogen in Sterile Triploid Pacific Oysters (Crassostrea gi vol.10, pp.10, 2013, https://doi.org/10.3390/cells10102668
  5. Analysis of the gene transcription patterns and DNA methylation characteristics of triploid sea cucumbers (Apostichopus japonicus) vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-87278-9