Preparation of PEGDA/PETEDA Dendrimer Membranes for $CO_2$ Separation

$CO_2$ 분리를 위한 PEGDA/PETEDA dendrimer 막의 제조

  • Han, Na (Department of Industrial Chemistry, Sangmyung University) ;
  • Lee, Hyunkyung (Department of Industrial Chemistry, Sangmyung University)
  • 한나 (상명대학교 공업화학과) ;
  • 이현경 (상명대학교 공업화학과)
  • Received : 2013.01.08
  • Accepted : 2013.02.25
  • Published : 2013.02.28

Abstract

PEGDA/PETEDA dendrimer composite membranes was prepared by UV photopolymerizing of poly ethylene glycol diacrylate (PEGDA) containing 5~15 wt% pentaerythrityl tetraethylenediamine (PETEDA) dendrimer. The prepared composite membrane was characterized by FT-IR, $^1H$-NMR and DSC. The glass transition temperature ($T_g$) of PEGDA/PETEDA dendrimer composite decreased with the increment of PETEDA dendrimer content. The $CO_2$ separation properties over $CH_4$ were investigated by changing the PETEDA dendrimer content and pressure. The composite membrane containing 10 wt% PETEDA dendrimer exhibited on excellent $CO_2/CH_4$ ideal selectivity of 31.8 and a $CO_2$ permeability of 162.2 barrer.

PEGDA/PETEDA dendrimer 막은 PEGDA에 5~15 wt%의 PETEDA dendrimer를 첨가하고 UV를 조사하여 제조하였다. 제조된 막의 특성은 FT-IR, $^1H$-NMR 그리고 DSC를 통해 분석하였다. PEGDA/PETEDA dendrimer 막의 유리전이온도($T_g$)는 PETEDA dendrimer의 함량이 증가할수록 감소하였다. $CH_4$에 대한 $CO_2$ 투과 특성은 PETEDA dendrimer의 함량과 압력을 변화시키며 조사하였다. 10 wt%의 PETEDA dendrimer를 포함하는 막의 투과도는 162.2 barrer였으나 $CO_2/CH_4$ 이상분리 인자는 31.8로 가장 높게 나타났다.

Keywords

References

  1. J. Suebsiri and M. Wilson, "A model of carbon capture and storage with demonstration of global warming potential and fossil fuel resource use efficiency", Energy Procedia, 4, 2465 (2001).
  2. H. Kameyama, K. Yoshizaki, and I. Yasuda, "Carbon Capture and Recycle by Integration of CCS and Green Hydrogen", Energy Procedia, 4, 2669 (2011). https://doi.org/10.1016/j.egypro.2011.02.167
  3. J. C. Stephens and S. Jiusto, "Assessing innoation in emerging energy technologies: Socia-technical dynamics of carbon capture and storage(CCS) and enhanced geothermal systems (EGS) in the USA", Energy Policy, 38, 2020 (2010). https://doi.org/10.1016/j.enpol.2009.12.003
  4. H. J. Lee, M. W. Lee, H. K. Lee, H. S. Choi, and S. H. Lee, "Recovery of $SF_6$ gas from gaseous mixture (SF/N/O/CF) through polymeric membranes", Membrane Journal, 21(1), 22 (2011).
  5. K. S. Chae, S. P. Lee, S. W. Oon, and T. Matsuoka, "Trends of underground $CO_2$ storage technology for the large scale reduction of GHG", Tunnel & Undergroud Space, 20(5), 309 (2010).
  6. S. H. Choi, J. H. Kim, B. S. Kim, S. B. Lee, and Y. T. Lee, "CO recovery from LNG-fired flue gas using a multi-staged pilot-scale membrane plant", Membrane Journal, 17(3), 197 (2007).
  7. S. S. Kim, " Applications and technical standards for biogas", Journal of Korra, 18(3), 38 (2010).
  8. T. H. Kim, J. C. Jeong, J. M. Park, and C. H. Woo, "A numerical analysis of direct contact membrane distillation for hollow fiber membrane", Membrane Journal, 20(4), 267 (2010).
  9. A. S. Kovvali and K. K. Kirkar, "Dendrimer liquid membranes : $CO_2$ separation from gas mixtures", Ind. Eng. Chem., 40, 2502 (2001). https://doi.org/10.1021/ie0010520
  10. S. Duan, F. A. Chowdhury, T. Kai, S. Kazama, and Y. Fujioka, "PAMAM dendrimer composite membrane for $CO_2$ separation: addition of hyaluronic acid in gutter layer and application of novel hydroxyl PAMAM dendrimer", Desalination, 234, 278 (2008). https://doi.org/10.1016/j.desal.2007.09.095
  11. S. Kuan, T. Kouketsu, S. Kazama, and K. Yamada, "Development of PAMAM dendrimer composite membranes for $CO_2$ separation", J. Membr. Sci., 283, 2 (2006). https://doi.org/10.1016/j.memsci.2006.06.026
  12. W. S. Jung and H. K. Lee, "Gas permeation characteristics of PTMSP/PMMH dendrimer composite membranes", Membrane Journal, 18(3), 226 (2008).
  13. T. Kouketsu, S. Duan, T. Kai, S. Kazama, and K. Yamada, "PAMAM dendrimer composite membrane for $CO_2$ separation: Formation of a chitosan gutter layer", J. Membr. Sci., 287, 51 (2007). https://doi.org/10.1016/j.memsci.2006.10.014
  14. I. Taniguchi, S. Duan, S. Kazama, and Y. Fujioka, "Facile fabrication of a novel high performance $CO_2$ separation membrane : Immobilization of poly (amidoamine) dendrimers in poly (ethylene glycol) networks", J. Membr. Sci., 322, 277 (2008). https://doi.org/10.1016/j.memsci.2008.05.067
  15. H. Lin and B. D. Freeman, "Gas solubility diffusivity and permeability in poly (ethylene oxide)", Journal of Membrane Science, 239, 105 (2004). https://doi.org/10.1016/j.memsci.2003.08.031
  16. Z. Wang, M. Li, Y. Cai, J. Wang, and S. Wang, "Novel $CO_2$ selectively permeating membranes containing PETEDA dendrimer", J. Membr. Sci., 290, 250 (2007). https://doi.org/10.1016/j.memsci.2006.12.041
  17. A. T. Phillip, "An octamine which functions as a bis-quadridentate ligand", Aust. J. Chem, 21, 2301 (1968). https://doi.org/10.1071/CH9682301
  18. H. Lin and B. D. Freeman, "Gas and vapor solubility in cross-linked poly (ethylene Glycol Diacrylate)", Macromolecules, 38, 8394 (2005). https://doi.org/10.1021/ma051218e
  19. H. Lin, T. Kai, B. D. Freeman, S. Kalakkunnath, and D. S. Kalika, "The effect of cross-linking on gas permeability in cross-linked poly (ethylene glycol diacrylate)", Macromolecules, 38, 8381 (2005). https://doi.org/10.1021/ma0510136
  20. H. Lin, B. D. Freeman, S. Kalakkunnath, and D. S. Kalika, "Effect of copolymer composition, temperature, and carbon dioxide fugacity on pure-and mixed-gas permeability in poly (etylene glycol)-based materials : Free volume interpretation", J. Membr. Sci., 291, 131 (2007). https://doi.org/10.1016/j.memsci.2007.01.001
  21. L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  22. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  23. B. K Park, S. H. Kong, S. Y. Lee, Y. J. Kim, and S. Y. Nam, "Organic/inorganic hybrid electrolytes for the application of direct methanol fuel cell (DMFC) preparation and properties of sulfonated SEBS (SSEBS)-clay hydrid membranes", Membrane Journal, 15, 165 (2005).
  24. H. I. Cho, M. Y. Seo, D. H. Kim, I. C. Park, S. Y. Nam, and J. W. Rhim "Pervaporation separation of water/ethanol mixture using PVA/PSSAMA ion exchange membranes", Membrane Journal, 16, 235 (2006).
  25. J. W. Park, D. H. Shim, and Y. T. Lee, "The concentration of magnolia aroma model solution using pervaporation and preparation of PVDF/PDMS composite membranes" Membrane Journal, 17, 14 (2007).