DOI QR코드

DOI QR Code

Brain Computer Interfacing: A Multi-Modal Perspective

  • Fazli, Siamac (Department of Brain and Cognitive Engineering, Korea University) ;
  • Lee, Seong-Whan (Department of Brain and Cognitive Engineering, Korea University)
  • Received : 2013.05.03
  • Accepted : 2013.05.08
  • Published : 2013.06.30

Abstract

Multi-modal techniques have received increasing interest in the neuroscientific and brain computer interface (BCI) communities in recent times. Two aspects of multi-modal imaging for BCI will be reviewed. First, the use of recordings of multiple subjects to help find subject-independent BCI classifiers is considered. Then, multi-modal neuroimaging methods involving combined electroencephalogram and near-infrared spectroscopy measurements are discussed, which can help achieve enhanced and robust BCI performance.

Keywords

References

  1. G. Dornhege, J. R. Millan, T. Hinterberger, D. McFarland, and K. R. Muller, Toward Brain-Computer Interfacing, Cambridge, MA: MIT Press, 2007.
  2. F. Popescu, S. Fazli, Y. Badower, B. Blankertz, and K. R. Muller, "Single trial classification of motor imagination using 6 dry EEG electrodes," PLoS ONE, vol. 2, no. 7, p. e637, 2007. https://doi.org/10.1371/journal.pone.0000637
  3. C. Grozea, C. D. Voinescu, and S. Fazli, "Bristle-sensors: low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications," Journal of Neural Engineering, vol. 8, no. 2, p. 25008, 2011. https://doi.org/10.1088/1741-2560/8/2/025008
  4. T. O. Zander, M. Lehne, K. Ihme, S. Jatzev, J. Correia, C. Kothe, B. Picht, and F. Nijboer, "A dry EEG-system for scientific research and brain-computer interfaces," Frontiers in Neuroscience, vol. 5, p. 53, 2011.
  5. Y. M. Chi, Y. T. Wang, Y. Wang, C. Maier, T. P. Jung, and G. Cauwenberghs, "Dry and noncontact EEG sensors for mobile brain-computer interfaces," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 20, no. 2, pp. 228-235, 2012. https://doi.org/10.1109/TNSRE.2011.2174652
  6. L. D. Liao, C. Y. Chen, I. J. Wang, S. F. Chen, S. Y. Li, B. W. Chen, J. Y. Chang, and C. T. Lin, "Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors," Journal of Neuroengineering and Rehabilitation, vol. 9, no. 1, p. 5, 2012. https://doi.org/10.1186/1743-0003-9-5
  7. C. Guger, G. Krausz, B. Z. Allison, and G. Edlinger, "Comparison of dry and gel based electrodes for P300 brain-computer interfaces," Frontiers in Neuroscience, vol. 6, p. 60, 2012.
  8. T. Elbert, B. Rockstroh, W. Lutzenberger, and N. Birbaumer, "Biofeedback of slow cortical potentials. I," Electroencephalography and Clinical Neurophysiology, vol. 48, no. 3, pp. 293-301, 1980. https://doi.org/10.1016/0013-4694(80)90265-5
  9. N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kubler, J. Perelmouter, E. Taub, and H. Flor, "A spelling device for the paralysed," Nature, vol. 398, no. 6725, pp. 297-298, 1999. https://doi.org/10.1038/18581
  10. B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. R. Muller, "Optimizing spatial filters for robust EEG singletrial analysis," IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 41-56, 2008.
  11. M. Krauledat, M. Schroder, B. Blankertz, and K. R. Muller, "Reducing calibration time for brain-computer interfaces: a clustering approach," in Advances in Neural Information Processing Systems 19, B. Scholkopf, J. Platt, and T. Hoffman, editors, Cambridge, MA: MIT Press, 2007, pp. 753-760.
  12. M. Krauledat, M. Tangermann, B. Blankertz, and K. R. Muller, "Towards zero training for brain-computer interfacing," PLoS ONE, vol. 3, no. 8, p. e2967, 2008. https://doi.org/10.1371/journal.pone.0002967
  13. S. Fazli, F. Popescu, M. Danoczy, B. Blankertz, K. R. Muller, and C. Grozea, "Subject-independent mental state classification in single trials," Neural Networks, vol. 22, no. 9, pp. 1305-1312, 2009. https://doi.org/10.1016/j.neunet.2009.06.003
  14. S. Fazli, C. Grozea, M. Danoczy, B. Blankertz, F. Popescu, and K. R. Muller, "Subject independent EEG-based BCI decoding," in Advances in Neural Information Processing Systems 22, Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, North Miami Beach, FL: Curran Associates, 2009, pp. 513-521.
  15. S. Fazli, M. Danoczy, J. Schelldorfer, and K. R. Muller, "(1)-penalized linear mixed-effects models for high dimensional data with application to BCI," Neuroimage, vol. 56, no. 4, pp. 2100-2108, 2011. https://doi.org/10.1016/j.neuroimage.2011.03.061
  16. S. Fazli, J. Mehnert, J. Steinbrink, G. Curio, A. Villringer, K. R. Muller, and B. Blankertz, "Enhanced performance by a hybrid NIRS-EEG brain computer interface," Neuroimage, vol. 59, no. 1, pp. 519-529, 2012. https://doi.org/10.1016/j.neuroimage.2011.07.084
  17. G. Pfurtscheller, B. Z. Allison, C. Brunner, G. Bauernfeind, T. Solis-Escalante, R. Scherer, T. O. Zander, G. Mueller-Putz, C. Neuper, and N. Birbaumer, "The hybrid BCI," Frontiers in Neuroscience, vol. 4, p. 30, 2010.
  18. T. Tsubone, T. Muroga, and Y. Wada, "Application to robot control using brain function measurement by near-infrared spectroscopy," in Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 2007, pp. 5342-5345.
  19. A. F. Abdelnour and T. Huppert, "Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model," Neuroimage, vol. 46, no. 1, pp. 133-143, 2009. https://doi.org/10.1016/j.neuroimage.2009.01.033
  20. M. Krauledat, "Analysis of nonstationarities in EEG signals for improving brain-computer interface performance," Ph.D. dissertation, Fakultat IV Elektrotechnik und Informatik, Technische Universitat Berlin, Berlin, Germany, 2008.
  21. C. Vidaurre, C. Sannelli, K. R. Muller, and B. Blankertz, "Co-adaptive calibration to improve BCI efficiency," Journal of Neural Engineering, vol. 8, no. 2, p. 25009, 2011. https://doi.org/10.1088/1741-2560/8/2/025009
  22. P. von Bunau, F. C. Meinecke, F. Kiraly, and K. R. Muller, "Finding stationary subspaces in multivariate time series," Physical Review Letters, vol. 103, no. 21, p. 214101, 2009. https://doi.org/10.1103/PhysRevLett.103.214101
  23. S. Fazli, J. Mehnert, J. Steinbrink, and B. Blankertz, "Using NIRS as a predictor for EEG-based BCI performance," in Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, 2012, pp. 4911-4914.
  24. R. Tibshirani, "Regression shrinkage and selection via the Lasso," Journal of the Royal Statistical Society B, vol. 58, no. 1, pp. 267-288, 1996.
  25. M. Grant and S. Boyd, "CVX: MATLAB software for disciplined convex programming, version 1.21," http://cvxr.com/cvx, April 2011.

Cited by

  1. Subject-dependent classification for robust idle state detection using multi-modal neuroimaging and data-fusion techniques in BCI vol.48, pp.8, 2015, https://doi.org/10.1016/j.patcog.2015.03.010
  2. Toward Automated Cochlear Implant Fitting Procedures Based on Event-Related Potentials vol.38, pp.2, 2017, https://doi.org/10.1097/AUD.0000000000000377
  3. Recent advances and open challenges in hybrid brain-computer interfacing: a technological review of non-invasive human research vol.3, pp.1, 2016, https://doi.org/10.1080/2326263X.2015.1134958
  4. Learning From More Than One Data Source: Data Fusion Techniques for Sensorimotor Rhythm-Based Brain–Computer Interfaces vol.103, pp.6, 2015, https://doi.org/10.1109/JPROC.2015.2413993
  5. Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset vol.5, pp.2052-4463, 2018, https://doi.org/10.1038/sdata.2018.3
  6. Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses vol.18, pp.6, 2018, https://doi.org/10.3390/s18061827