DOI QR코드

DOI QR Code

The Effects of Homogenization, Hot-Forging, and Annealing Condition on Microstructure and Hardness of a Modified STD61 Hot-Work Tool Steel

균질화, 열간단조, 어닐링 조건이 개량된 STD61 열간 금형강의 미세조직과 경도에 미치는 영향

  • Park, Gyujin (Department of Materials Science and Engineering, Yonsei University) ;
  • Kang, Min-Woo (Department of Materials Science and Engineering, Yonsei University) ;
  • Jung, Jae-Gil (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Young-Kook (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Byung-Hoon (Casting & Forging BG, Doosan Heavy Industries & Construction)
  • 박규진 (연세대학교 공과대학 신소재공학과) ;
  • 강민우 (연세대학교 공과대학 신소재공학과) ;
  • 정재길 (연세대학교 공과대학 신소재공학과) ;
  • 이영국 (연세대학교 공과대학 신소재공학과) ;
  • 김병훈 (두산중공업(주) 주단BG)
  • Received : 2013.01.16
  • Accepted : 2013.03.04
  • Published : 2013.03.30

Abstract

The effects of homogenization, hot-forging, and annealing condition on microstructure and hardness of a modified STD61 hot-work tool steel were investigated. The ingot specimen had a dendritic structure consisting of bainite and martensite. Spherical VC particles of approximately 50 nm and cuboidal (V,Ti)C particles of about 100 nm were observed in the ingot specimen. After homogenization, the dendritic structure was blurred, and the difference in hardness between martensite and bainite became narrow, resulting in the more homogeneous microstructure. Needle-shaped non-equilibrium $(Fe,Cr)_3C$ particles were additionally observed in the homogenized specimen. The hot-forged specimen had bainite single phase with spherical VC, cuboidal (V,Ti)C, and needle-shaped $(Fe,Cr)_3C$ particles. After annealing at $860^{\circ}C$, the microstructures of specimens were ferrite single phase with various carbides such as VC, $(Fe,Cr)_7C_3$, and $(Fe,Cr)_{23}C_6$ because of relatively slow cooling rates. The size of carbides in annealed specimens decreased with increasing cooling rate, resulting in the increase of hardness.

Keywords

References

  1. V. Leskovsek, B. Sustarsi , and G. Jutrisa : J. Mater. Process. Technol. 178 (2006) 328. https://doi.org/10.1016/j.jmatprotec.2006.04.016
  2. M. L. Fares, M. Athmani, Y. Khelfaoui, and A. Khettache : IOP Conf. Ser. Mater. Sci. Eng., Madrid, Spain (2012).
  3. S. Mayer, H. Leitner, C. Scheu, I. Silier, and H. Clemens : Steel Research Int., 80 (2009) 89.
  4. I. Souki, D. Delagnes, and P. Lours : ICM., 11, Como, Italy (2011).
  5. L. A. Dobrza ski, J. Mazurkiewicz, and E. Hajduczek : J. Mater. Process. Technol., 157 (2004) 472.
  6. V. Kuzucu, M. Aksoy, and M. H. Korkut : J. Mater. Process. Technol., 82 (1998) 165. https://doi.org/10.1016/S0924-0136(98)00028-4
  7. A. Medvedeva, J. Bergstrom, S. Gunnarsson, and J. Andersson : Mater. Sci. Eng. A, 523 (2009) 39. https://doi.org/10.1016/j.msea.2009.06.010
  8. M. L. Fares, M. Athmani, Y. Khelfaoui, and A. Khettache : IOP Conf. Ser. Mater. Sci. Eng., Madrid, Spain (2012).
  9. P. Michaud, D. Delagnes, P. Lamesle, M. H. Mathon, and C. Levaillant : Acta Mater., 55 (2007) 4877. https://doi.org/10.1016/j.actamat.2007.05.004
  10. D. Delagnes, P. Lamesle, M. H. Mathon, N. Mebarki, and C. Levaillant : Mater. Sci. Eng. A, 394 (2005) 435. https://doi.org/10.1016/j.msea.2004.11.050
  11. D. S. Ma, J. Zhou, Z. Z. Chen, Z. K. Zhang, Q. A. Chen, and D. H. Li : J. Iron Steel Inst. 16 (2009) 56. https://doi.org/10.1016/S1006-706X(10)60011-8
  12. J. G. Jung, M. Jung, S. M. Lee, E. Shin, H. C. Shin, and Y. -K. Lee : J. Alloys Comp., 553 (2013) 299. https://doi.org/10.1016/j.jallcom.2012.11.108
  13. L. R. Woodyatt and G. Krauss : Metal. Mater. Trans. A, 7 (1976) 983. https://doi.org/10.1007/BF02644064
  14. F. G. Caballero, H. K. D. H. Bhadeshia, K. J. A. Mawella, D. G. Jones, and P. Brown : Mater. Sci. Technol., 18 (2002) 279. https://doi.org/10.1179/026708301225000725
  15. J. Kalousek, D. M. Fegredo, and E. E. Laufer : in K. C. Ludema, ASME, Vancouver, Canada (1985) 212.
  16. G. Krauss, Steels : Heat Treatment and Processing Principles 5th ed, ASM Int., Ohio (1990).

Cited by

  1. The effects of annealing temperature and cooling rate on carbide precipitation behavior in H13 hot-work tool steel vol.627, 2015, https://doi.org/10.1016/j.jallcom.2014.11.189
  2. 고합금 공구강의 최적 오스테나이트 처리 온도 결정 vol.30, pp.4, 2013, https://doi.org/10.12656/jksht.2017.30.4.156
  3. Investigation into High-Temperature Interfacial Strength of Heat-Resisting Alloy Deposited by Laser Melting Process vol.26, pp.3, 2020, https://doi.org/10.1007/s12540-019-00335-x