DOI QR코드

DOI QR Code

Hydration Properties of Low Carbon type Low Heat Blended Cement

무기질 자극제를 사용한 탄소배출 저감형 저발열형 혼합시멘트의 수화특성에 관한 연구

  • Received : 2012.09.03
  • Accepted : 2013.05.10
  • Published : 2013.06.20

Abstract

Of construction materials, cement and steel are the representative material that carbon dioxide. to reduce carbon emissions in the use of these materials The purpose of this study is low heat type blended cement, which is manufactured using a amount of cement than ordinary low heat blended cement. Low heat blended cement, mixing ratio of 10%, was investigated hydration properties and adiabatic temperature of concrete. The study in order to activate the reaction mineral admixture, a separate source of CaO and $SO_3$ areneeded. gypsum and lime, it expected amount of cement, low-carbon low-heat blended cement could reduce the hydration heat concrete than currentlyused low heat blended cement.

건설재료 중 시멘트 및 철강은 대표적으로 탄산가스를 발생시키는 재료산업이다. 건설 산업에서의 탄소 배출량 감소를 위해서는 이러한 재료의 사용을 감소시키는 것이 가장 효과적이라고 할 수 있다. 본 연구에서는 시멘트의 사용량을 감소시킨 저발열형 혼합시멘트의 개발을 목적으로 하고 있다. 시멘트 혼합 비율을 10 %로 낮춘 저탄소 배출형 저발열 혼합시멘트의 수화 특성 및 콘크리트의 온도상승 특성을 검토하였다. 시험 결과, 혼화재의 반응 활성화를 위해서는 CaO 및 $SO_3$의 공급원 필요하며, 석고 및 생석회를 적정 배합비율 적용할 경우 초기에는 강도 발현이 다소 지연되지만 장기재령에서는 기존의 저발열 혼합시멘트와 유사한 성능을 확보 가능한 것으로 나타났다. 특히 저탄소 저발열 혼합시멘트의 경우 콘크리트의 수화열도 기존 저발열 혼합시멘트에 비해 감소시킬 수 있는 것으로 나타났다.

Keywords

References

  1. Cho JW. $CO_{2}$ Reduction Cement Technologies. Magazine of the Korea Concrete Institute. 2011 Nov;23(6):32-5.
  2. Han HS, Jin YM. The Future of Concrete Admixture Industry for Low Carbon. Magazine of the Korea Concrete Institute. 2009 Jul;21(4):41-4.
  3. Lee HS. $CO_{2}$ Reduction Technology for Concrete. Magazine of Korea Concrete Institute. 2011 Nov;23(6):28-31.
  4. Arai Y. The Chemical material of Cement. 2nd rev. ed. Jang BK, Jung CJ, Lee JH, Lim YM, translators. Gwangju: Cheonnam National University; 1998. 311 p.
  5. Song TH, Lee SH. The study on Design and Utilization of CSA Mineral Admixture for Concrete. Gyeonggido(Korea): Korea institute of construction technology; 2005. 211 p. Report No.: KICT 2005-042.
  6. Soh YS, Piao YM, Mun GJ, Hyoung WG. Properties of cement motar using blast furnace slag with types of accelerator. Journal of the Architectural Institute of Korea. 2002 May;18(5):65-72
  7. Moon KJ, Lee CW, So WY, Soh TS. Hydration Reaction of Non-Sintering Cement Using Inorganic Industrial Waste as Activator. Journal of the Korea Concrete Institute. 2006 Apr;18(2):267-74. https://doi.org/10.4334/JKCI.2006.18.2.267
  8. Kanai R, Wachi M, Tsuji D, Inoue K, Mitsui K, Yonezawa T. Basic Properties of Concrete Containing High Amount of Blast Furnace Slag - (Part2) Influence of $SO_{3}$ Amount and Water Cement Ratio on Fresh Property and Compressive Strength. Proceedings of the Architectural Institute of Japan; 2011 August 23-25; Kanto. Tokyo(Japan): Architectural Institute of Japan; 2011. p. 207-8
  9. Korea Standards Association. KS L 5201 Portland Cement. Korea Standards Association; 2011.

Cited by

  1. Effect of Fine Particle Cement and Recycled Aggregates as Alkali Activator on the Engineering Properties and Micro-Structure of High Volume Blast Furnace Slag Concrete vol.13, pp.6, 2013, https://doi.org/10.5345/JKIBC.2013.13.6.602
  2. Durability Assessment of High Strength Concrete with High Volume Mineral Admixture vol.27, pp.6, 2015, https://doi.org/10.4334/JKCI.2015.27.6.641
  3. Effects of Limestone Powder and Silica Fume on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Mortars vol.27, pp.2, 2015, https://doi.org/10.4334/JKCI.2015.27.2.127
  4. Mechanical Properties of Granulated Ground Blast Furnace Slag on Blended Activator of Sulfate and Alkali vol.19, pp.5, 2015, https://doi.org/10.11112/jksmi.2015.19.5.104
  5. Evaluation of Hydration Heat of Mass Concrete with Capsulated Slurry PCM and FEM Study for Analyzing Thermal Crack vol.14, pp.5, 2014, https://doi.org/10.5345/JKIBC.2014.14.5.379
  6. Strength Development and Durability of High-Strength High-Volume GGBFS Concrete vol.3, pp.3, 2015, https://doi.org/10.14190/JRCR.2015.3.3.261
  7. Effects of Replacement Ratio and Fineness of GGBFS on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Pastes vol.27, pp.2, 2015, https://doi.org/10.4334/JKCI.2015.27.2.115