임플란트 표면처리 기술: 마이크로 아크 산화법과 그 응용

Micro-arc Oxidation and Its Application in Implant Surface Modification

  • 발행 : 2013.09.01

초록

Titanium (Ti) and its alloys are currently popularly used for dental and orthopedic implants, due to their merits, including corrosion resistance, mechanical properties, chemical stability and biocompatibility. Accumulated studies have also demonstrated that osseointegration of the Ti-based implants could be significantly improved by the surface modifications. Micro-arc oxidation (MAO) is one promising electrochemical modification technique for osseointegration of implants, enabling the deposition of a rough and thick oxide layer which containing calcium and phosphorous ions via one-step process. Here we briefly review recent studies on the MAO-modified Ti-based implant materials and their future applications.

키워드

참고문헌

  1. D. M. Brunette, P. Tengvall, M. Textor and P. Thomsen, Titanium in medicine, Springer, Berlin, 2001.
  2. R. Van Noort, "Titanium: The implant material of today," J. Mater. Sci., 22, 3801-3811 (1987). https://doi.org/10.1007/BF01133326
  3. Y. T. Sul, C. B. Johansson, Y. Jeong, K. Roser, A. Wennerberg and T. Albrektsson, "Oxidized implants and their influence on the bone response," J. Mater. Sci. Mater. Med., 12, 1025-1031 (2001). https://doi.org/10.1023/A:1012837905910
  4. A. Wennerberg, "The importance of surface roughness for implant incorporation," Int. J. Mach. Tool. Manu., 38, 657-662 (1998). https://doi.org/10.1016/S0890-6955(97)00114-4
  5. S. Hansson and M. Norton, "The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model," J. Biomech., 32, 829-836 (1999). https://doi.org/10.1016/S0021-9290(99)00058-5
  6. D. Li, S. J. Ferguson, T. Beutler, D. L. Cochran, C. Sittig, H. P. Hirt and D. Buser, "Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants," J. Biomed. Mater. Res., 60, 325-332 (2002). https://doi.org/10.1002/jbm.10063
  7. T. Hanawa, Y. Kamiura, S. Yamamoto, T. Kohgo, A. Amemiya, H. Ukai, K. Murakami and K. Asaoka, "Early bone formation around calcium ion implanted titanium inserted into rat tibia," J. Biomed. Mater. Res., 36, 131-136 (1997). https://doi.org/10.1002/(SICI)1097-4636(199707)36:1<131::AID-JBM16>3.0.CO;2-L
  8. M. J. Filiaggi, N. A. Coombs and R. M. Pilliar, "Characterization of the interface in the plasma sprayed HA coating/Ti-6Al-4V implant system," J. Biomed. Mater. Res., 25, 1211-1229 (1991). https://doi.org/10.1002/jbm.820251004
  9. S. H. Lee, H. E. Kim and H. W. Kim, "Nano-Sized Hydroxyapatite Coatings on Ti Substrate with $TiO_2$ Buffer Layer by E-beam Deposition," J. Am. Ceram. Soc., 90, 50-56 (2007). https://doi.org/10.1111/j.1551-2916.2006.01351.x
  10. H. W. Kim, H. E. Kim, V. Salih and J. C. Knowles, "Sol-gelmodified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses," J. Biomed. Mater. Res. A, 74, 294-305 (2005).
  11. T. Kokubo, F. Miyaji, H. M. Kim and T. Nakamura, "Spontaneous formation of bonelike apatite layer on chemically treated titanium metals," J. Am. Ceram. Soc., 79, 1127-1129 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08561.x
  12. B. D. Hahn, D. S. Park, J. J. Choi, J. Ryu, W. H. Yoon, K. H. Kim, C. Park and H. E. Kim, "Dense nanostructured hydroxyapatite coating on titanium by aerosol deposition," J. Am. Ceram. Soc., 92, 683-687 (2009). https://doi.org/10.1111/j.1551-2916.2008.02876.x
  13. A. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. Dowey, "Plasma electrolysis for surface engineering," Surf. Coat. Tech., 122, 73-93 (1999). https://doi.org/10.1016/S0257-8972(99)00441-7
  14. L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo and J. Y. Koak, "Improved biological performance of Ti implants due to surface modification by micro-arc oxidation," Biomaterials, 25, 2867-2875 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.048
  15. E. Bardal, Corrosion and protection, Springer, New York, 2004.
  16. J. Li, L. Wan and J. Feng, "Micro arc oxidation of S-containing $TiO_2$ films by sulfur bearing electrolytes," J. Mater. Process. Tech., 209, 762-766 (2009). https://doi.org/10.1016/j.jmatprotec.2008.02.053
  17. H. F. Guo, M. Z. An, H. B. Huo, S. Xu and L. J. Wu, "Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions," Appl. Surf. Sci., 252, 7911-7916 (2006). https://doi.org/10.1016/j.apsusc.2005.09.067
  18. H. Ishizawa and M. Ogino, "Formation and characterization of anodic titanium oxide films containing Ca and P," J. Biomed. Mater. Res., 29, 65-72 (1995). https://doi.org/10.1002/jbm.820290110
  19. H. Ishizawa and M. Ogino, "Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment," J. Biomed. Mater. Res., 29, 1071-1079 (1995). https://doi.org/10.1002/jbm.820290907
  20. B. D. Boyan, R. Batzer, K. Kieswetter, Y. Liu , D. L. Cochran, S. Szmuckler-Moncler, D. D. Dean and Z. Schwartz, "Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to $1{\alpha}$,25-$(OH)_2D_3$," J. Biomed. Mater. Res., 39, 77-85 (1998). https://doi.org/10.1002/(SICI)1097-4636(199801)39:1<77::AID-JBM10>3.0.CO;2-L
  21. J. Y. Martin, Z. Schwartz, T. W. Hummert, D. M. Schraub, J. Simpson, J. Lankford, D. D. Dean, D. L. Cochran and B. D. Boyan, "Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63)," J. Biomed. Mater. Res., 29, 389-401 (1995). https://doi.org/10.1002/jbm.820290314
  22. C. Capuccini, P. Torricelli, F. Sima, F. Boanini, C. Ristoscu, B. Bracci, G. Socol, M. Fini, I. N. Mihailescu and A. Bibi, "Strontiumsubstituted hydroxyapatite coatings synthesized by pulsed-laser deposition: In vitro osteoblast and osteoclast response," Acta Biomater., 4, 1885-1893 (2008). https://doi.org/10.1016/j.actbio.2008.05.005
  23. Y. Han, D. H. Chen, L. Zhang. "Nanocrystallized SrHA/SrHA-$SrTiO_3$/ $SrTiO_3$-$TiO_2$ multilayer coatings formed by micro-arc oxidation for photocatalytic application," Nanotechnology, 19, 335705 (2008). https://doi.org/10.1088/0957-4484/19/33/335705
  24. K. Nan, T. Wu, J. Chen, S. Jiang, Y. Huang and G. Pei, "Strontium doped hydroxyapatite film formed by micro-arc oxidation," Mater. Sci. Eng. C, 29, 1554-1558 (2009). https://doi.org/10.1016/j.msec.2008.12.018
  25. K. C. Kung, T. M. Lee and T. S. Lui, "Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation," J. Alloy. Compd., 508, 384-390 (2010). https://doi.org/10.1016/j.jallcom.2010.08.057
  26. K. C. Kung, T. M. Lee, J. L. Chen and T. S. Lui, "Characteristics and biological responses of novel coatings containing strontium by micro-arc oxidation," Surf. Coat. Tech., 205, 1714-1722 (2010). https://doi.org/10.1016/j.surfcoat.2010.05.018
  27. C. J. Chung and H. Y. Long, "Systematic strontium substitution in hydroxyapatite coatings on titanium via micro-arc treatment and their osteoblast/osteoclast responses," Acta Biomater., 7, 4081-4087 (2011). https://doi.org/10.1016/j.actbio.2011.07.004
  28. K. H. Frosch and K. M. Sturmer, "Metallic Biomaterials in Skeletal Repair," Eur. J. Trauma, 32, 149-159 (2006). https://doi.org/10.1007/s00068-006-6041-1
  29. W. C. Rodrigues, L. R. Broilo, L. Schaeffer, G. Knornschild and F. R. M. Espinoza, "Powder metallurgical processing of Co-28%Cr-6%Mo for dental implants: Physical, mechanical and electrochemical properties," Powder Technol., 206, 233-238 (2011).
  30. C. M. Han, H. E. Kim, Y. S. Kim and S. K. Han, "Enhanced biocompatibility of Co-Cr implant material by Ti coating and micro-arc oxidation," J. Biomed. Mater. Res. B, 90, 165-170 (2009).
  31. L. Zhao, P. K. Chu, Y. Zhang and Z. Wu, "Antibacterial coatings on titanium implants," J. Biomed. Mater. Res. B, 91, 470-480 (2009).
  32. S. Radin, P. Ducheyne, T. Kamplain and B. H. Tan, "Silica sol-gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release," J. Biomed. Mater. Res. B, 57, 313-320 (2001). https://doi.org/10.1002/1097-4636(200111)57:2<313::AID-JBM1173>3.0.CO;2-E
  33. S. H. Jun, E. J. Lee, H. E. Kim J. H. Jang and Y. H. Koh, "Silicachitosan hybrid coating on Ti for controlled release of growth factors," J. Mater. Sci. Mater. Med., 22, 2757-2764 (2011). https://doi.org/10.1007/s10856-011-4458-5
  34. C. M. Han, E. J. Lee, H. E. Kim, Y. H. Koh and J. H. Jang, " Porous $TiO_2$ films on Ti implants for controlled release of tetracyclinehydrochloride (TCH)," Thin Solid Films, 519, 8074-8076 (2011). https://doi.org/10.1016/j.tsf.2011.06.013
  35. T. Kokubo and H. Takadama, "How useful is SBF in predicting in vivo bone bioactivity?" Biomaterials, 27, 2907-2915 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017
  36. Y. Han, S. H. Hong and K. Xu, "Structure and in vitro bioactivity of titania-based films by micro-arc oxidation,". Surf. Coat. Tech., 168, 249-258 (2003). https://doi.org/10.1016/S0257-8972(03)00016-1
  37. D. Wei, Y. Zhou, D. Jia and Y. Wang, "Characteristic and in vitro bioactivity of a microarc-oxidized $TiO_2$-based coating after chemical treatment," Acta Biomater., 3, 817-827 (2007). https://doi.org/10.1016/j.actbio.2007.03.001
  38. D. Wei, Y. Zhou, Y. Wang, Q. Meng and D. Jia, "Structure and apatite formation of microarc oxidized $TiO_2$-based films before and after alkali-treatment by various alkali concentrations," Surf. Coat. Tech., 202, 5012-5019 (2008). https://doi.org/10.1016/j.surfcoat.2008.05.004