은-알지네이트/PVP 나노섬유의 항균 특성

Antibacterial Properties of Silver-alginate/PVP Nanofiber

  • 발행 : 2013.08.10

초록

알지네이트에 은이온을 첨가하기 위하여, 질산은 수용액을 이용하여 은-알지네이트를 제조하였다. 본 연구에서는 은-알지네이트를 Poly vinylpyrrolidone (PVP) 수용액과 블렌드하였고, 전기방사는 블렌드 용액을 이용하여 수행하였다. 은-알지네이트/PVP 혼합 용액의 항균효과는 colony counting test로 대장균과 포도상 구균에 대해 확인하였다. 은-알지네이트/PVP 혼합용액의 전기방사 조건은 조성물의 농도를 다양하게 하여 방사거리 22 cm, 방사속도 0.01 mL/min, 전압 26 kV 조건하에서 수행하여 나노섬유를 제조하였다. 은-알지네이트 나노 섬유의 형태와 크기는 SEM과 Image J를 통해 확인하였으며, 전기방사된 SA5P15 섬유들의 평균 직경은 124 nm를 보였으며, 균일하게 방사되는 것을 확인하였다. SA5P15의 균 감소율은 24 시간 후 99.9%를 보였다.

In order to incorporate silver ions into the alginate, silver-alginate was prepared with aqueous solutions of silver nitrate. In the study, the silver-alginate was prepared by blending with poly vinylpyrrolidone solutions and the electrospinning was performed by using this blend solution. Antibacterial properties of silver-alginate/PVP solutions were estimated for Escherichia coli and Staphylococcus aureus by the colony counting test. Electrospinning conditions of silver-alginate/PVP solution were the tip-to-collector distance of 22 cm, the flow rate of the solution at 0.01 mL/min, and the voltage at 26 kV. The form and size of silver-alginate/PVP nanofibers were estimated by SEM and Image J. The average diameter of the electrospun SA5P15 fibers was 124 nm and showed a narrow diameter distribution. The reduction of bacteria for SA5P15 exhibited 99.9% after 24 h.

키워드

참고문헌

  1. E. Nishide, Y. Kinoshita, H. Anzai, and N. Uchida, Nippon Suisan Gakkaishi, 54, 1619 (1988). https://doi.org/10.2331/suisan.54.1619
  2. E. Nishide, A. Hiroshi, and U. Naoyuki, Nippon Suisan Gakkaishi, 53, 1215 (1987). https://doi.org/10.2331/suisan.53.1215
  3. M. Fujihara and T. Nagumo, J. Chromatogr., A, 465, 386 (1989). https://doi.org/10.1016/S0021-9673(01)92676-7
  4. K. Noda and K. Takada, Bull. J. Soc. Sci. Fish., 49, 1591 (1983). https://doi.org/10.2331/suisan.49.1591
  5. S. M. Han, C. W. Nam, and S. W. Ko, J. Kor. Fiber Soc., 37, 365 (2000).
  6. Y. Qin, J. Appl. Polym. Sci., 91, 1641 (2004). https://doi.org/10.1002/app.13317
  7. K. F. Eltahlawy, M. A. Elbelndary, A. G. Elhendawy, and S. M. Hudson, Carbohydr. Polym., 60, 421 (2005). https://doi.org/10.1016/j.carbpol.2005.02.019
  8. M. Ma and G. Sun, Dyes Pigm., 66, 33 (2005). https://doi.org/10.1016/j.dyepig.2004.09.001
  9. J. W. Lee, R. M. Broughton, A. Akdag, S. D. Worley, and T. S. Huang, Fibers Polym., 8, 148 (2007). https://doi.org/10.1007/BF02875784
  10. Y. Qin, Polym. Adv., Technol., 19, 6 (2008). https://doi.org/10.1002/pat.960
  11. Y. Liu, J. Chen, V. Misoska, and G. G. Wallance. Reac. Funct. Polym., 67, 461 (2007). https://doi.org/10.1016/j.reactfunctpolym.2007.02.008
  12. K. E. Park, S. A. Park, G. H. Kim, and W. D. Kim, Polymer (Korea), 32, 206 (2008).
  13. M. Bognitzki, T. Frese, M. Steinhart, A. Greiner, J. H. Wendorff, A. Schaper, and M. Hellwing, Polym. Eng. Sci., 41, 982 (2001). https://doi.org/10.1002/pen.10799
  14. Q. Yang, Z. Li, Y. Hong, Y. Zhao, S. Qiu, C. and Wang, Y. We. J. Polym. Sci.: Part B: Polym. Phys., 42, 3721 (2004). https://doi.org/10.1002/polb.20222
  15. S. K. Choi and Y. S. Choi, Polymer(Korea), 35, 1 (2011).
  16. George H. Scherr "Silver alginate foam compositions" U. S. PAT. 6,696,077 (2004).
  17. H. Fomg, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999). https://doi.org/10.1016/S0032-3861(99)00068-3
  18. X. H. Zhong, K. S. Kim, D. F. Fang, S. F. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002). https://doi.org/10.1016/S0032-3861(02)00275-6