난연제 종류에 따른 연질 폴리우레탄 폼의 난연 특성에 대한 연구

Effect of Flame Retardants on Flame Retardancy of Flexible Polyurethane Foam

  • 권오덕 (현대기아자동차 연구개발 총괄본부) ;
  • 이주찬 (한국원자력연구원 핵주기폐기물처리연구부) ;
  • 서기석 (한국원자력연구원 핵주기폐기물처리연구부) ;
  • 서중석 (핵비확산시스템연구부) ;
  • 김상범 (경기대학교 화학공학과)
  • Kwon, Ohdeok (Hyundai-Kia Motors Co., Ltd.) ;
  • Lee, Ju-Chan (Nuclear Fuel Cycle Waste Treatment Research Division, Korea Atomic Energy Research Institute) ;
  • Seo, Ki-Seog (Nuclear Fuel Cycle Waste Treatment Research Division, Korea Atomic Energy Research Institute) ;
  • Seo, Chung-Seok (Nonproliferation System Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Sang Bum (Department of Chemical Engineering, Kyonggi University)
  • 발행 : 2013.04.10

초록

본 연구에서는 인계 난연제가 첨가된 연질 폴리우레탄 폼을 합성하여 난연제의 종류에 따른 난연성능 변화를 고찰하였다. 난연제로는 Tetramethylene bis(orthophosphorylurea) [TBPU]와 Phosphinyl alkylphosphate ester [CR-530], Resorcinol bis diphenylphosphate [RDP], Triethyl phosphate [TEP] 등을 사용하였다. 열중량분석기를 사용하여 난연제에 따른 폴리우레탄 폼의 열분해거동을 알아보았으며, 콘칼로리미터를 이용하여 열방출량, 질량감소율, 연기발생량, CO 및 $CO_2$ 발생량 등을 측정하였다. TBPU가 첨가된 폴리우레탄 폼은 난연제가 첨가되지 않은 폴리우레탄 폼에 비하여 낮은 온도에서 분해가 시작되었으나 고온에서는 많은 양의 char를 생성하였다. 콘칼로리미터 시험 결과 TBPU가 첨가될 경우 평균 발열량, 최대 발열량, 유효연소열, 질량감소율, CO 및 $CO_2$ 발생량이 감소하였고 다른 난연제에 비하여 낮은 값을 나타내어 우수한 난연성능을 나타냄을 알 수 있었다.

In this study, the effect of phosphorus flame retardants on the flame retardancy of the flexible polyurethane foam (PUF) was investigated. Tetramethylene bis(orthophosphorylurea) [TBPU] and phosphinyl alkylphosphate ester [CR-530], resorcinol bis diphenylphosphate [RDP], triethyl phosphate [TEP] were used as flame retardants. The results of thermogravimetric analysis (TGA) indicate that TBPU added PUF produces more charred residues than the other flame retardant added PUF. It was found that TBPU added PUF exhibits low mean heat release rate (HRR), peak HRR, effective heat of combusion (EHC), mass loss rate (MLR), CO yield and $CO_2$ compared to those other flame retardants.

키워드

참고문헌

  1. S. B. Kim, Y. J. Sin, and Y. H. Kim, KIGAS, 5, 79 (2001).
  2. D Drysdale, Fire and cellular polymers, Elsevier Applied Science, London (1987).
  3. A. Magnusson, S. Lundmark, and A. Andersson, UTECH Europe, 2006, 63 (2006).
  4. Z. Tang, M. Valer, J. M. Anderson, J. W. Miller, M. L. Listemann, P. L. McDaniel, D. K. Morita, and W. R. Furlan, Polymer, 43, 6471 (2002). https://doi.org/10.1016/S0032-3861(02)00602-X
  5. S. V. Levchik and E. D. Weil, Polym Int., 53, 1585 (2004). https://doi.org/10.1002/pi.1314
  6. M. Thirumal, K. N. Singha, and D. Khastgir, J. Appl. Polym. Sci., 116, 2260 (2010).
  7. L. Jin and M. Dezhu, J. Appl. Polym. Sci., 84, 2206 (2002). https://doi.org/10.1002/app.10421
  8. L. V. Luchkina, A. A. Askadskii, and K. A. Bychko, Russ. J. Appl. Chem., 78, 1337 (2005). https://doi.org/10.1007/s11167-005-0511-9
  9. H. Mahfuz, V. K. Rangar, M. S. Islam, and S. Jeelani, Composites. Part A, 35, 453 (2004). https://doi.org/10.1016/j.compositesa.2003.10.009
  10. W. Zatorski, Z. K. Brzozowski, and A. Kolbrecki, Polym. Degrad. Stab., 93, 2071 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.05.032
  11. M. Thirumal, D. Khastgir, and N. K. Singha, J. Macromol. Sci., Pure Appl. Chem., 46, 704 (2009). https://doi.org/10.1080/10601320902939101
  12. J. Ni, Q. Tai, and H. Lu, Poly. Adv. Technol., 21, 392 (2010). https://doi.org/10.1016/j.apt.2010.02.017
  13. J. Kim, K. Lee, J. Bae, J. Yang, and S. Hong, Polym. Degrad. Stab., 79, 201 (2003). https://doi.org/10.1016/S0141-3910(02)00272-0
  14. B. N. Jang and J. H. Choi, Poly. Sci. Technol., 20, 8 (2009).
  15. M. Modesti, L. Zanella, A. Lorenzetti, R. Bertani, and M. Gleria, Polym. Degrad. Stab., 87, 287 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.07.023
  16. G. W. Lee and G. E. Kim, KIFSE, 17, 76 (2003).
  17. R. H. Kramer, M. Zammarano, and G. T. Linteris, Polym. Degrad. Stab., 95, 1115 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.02.019
  18. C. H. Kim, W. J. Seo, O. D. Kwon, and S. B. Kim, Appl. Chem. Eng., 2, 540 (2011).
  19. Y. J. Chung, Y. Kim, and S. Kim, J. Ind. Eng. Chem., 15, 888 (2009). https://doi.org/10.1016/j.jiec.2009.09.018
  20. J. G. Quintire, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
  21. Y. J. Chung, H. M. Lim, E. Jin, and J. K. Oh, Appl. Chem. Eng., 22, 439 (2011).
  22. M. Delichatsios, B. Paroz, and A. Bhargava, Fire Saf. J., 38, 219 (2003). https://doi.org/10.1016/S0379-7112(02)00080-2
  23. M. J. Spearpoint and G. J. Quintiere, Combust. Flame, 123, 308 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  24. B. G. Lee, J. H. Lee, and D. S. Bang, Elast. Comp., 46, 164 (2011).