DOI QR코드

DOI QR Code

Phosphorus removal from dewatering centrate in wastewater treatment by struvite formation

스트루바이트 생성을 통한 하수슬러지 탈수여액 내 인 제거

  • Kim, Sang-Hyoun (Department of Environmental Engineering, Daegu University) ;
  • Park, Jong-Hun (Department of Environmental Engineering, Daegu University) ;
  • Ju, Hyun-Jun (Department of Environmental Engineering, Daegu University)
  • 김상현 (대구대학교 환경공학과) ;
  • 박종훈 (대구대학교 환경공학과) ;
  • 주현준 (대구대학교 환경공학과)
  • Published : 2013.06.30

Abstract

This study examined the feasibility of phosphorus removal from dewatering centrate/filtrate in wastewater treatment by struvite formation. Since dewatering centrate/filtrate obtained after anaerobic digestion contains a high content of ammonia, magesium addition and pH adjustment could remove phosphorous. The optimum magnesium dose, reaction time, settling time, and pH value was found at 2 mol Mg/mol $PO_4^{3-}$, 10 min, 120 min, and 8.5, respectively. A bench-scale continuous operation at the optimum condition showed 80% of total phosphorus removal and 82% of phosphate removal in dewatering centrate. The elemental composition and crystal structure of the chemical precipitate was similar to the reported values of struvite.

하수처리 탈수여액 내에 존재하는 고농도 인을 스트루바이트 생성을 통해 제거하기 위한 타당성 조사를 수행하였다. 혐기 소화를 거친 탈수여액 내에는 암모니아가 인산염 보다 높은 농도로 존재하므로 별도의 질소 투입 없이 마그네슘 주입과 pH 조절만을 통해 인 제거가 가능하였다. 인 제거 효율은 마그네슘 주입량, 교반 시간, 침전 시간, pH에 영향을 받았으며, 최적 반응 조건은 $Mg^{2+}/PO_4^{3-}$ 비 2 mol/mol 이상, 교반 시간 10분 이상, 침전 시간 120분 이상, pH 8.5 이상으로 도출되었다. 위 조건에서의 연속 운전 시 총인 제거율 80%, 인산염 제거율 82% 달성이 가능하였다. 침전물의 원소 조성과 결정 구조는 기존 보고된 스트루바이트와 유사하였다.

Keywords

References

  1. Um, I. K., Yang, C. H. and Yeon, D. S., "Crystallization of Nitrogen and Phosphate Using Seanater", J. of Korea Society of Environmental Engineers, 18(6), pp. 733-741 (1996).
  2. Burns, J. R. and Finlayson, B., "Solubility product of magnesium ammonium phosphate hexahydrate at various temperatures", J. of Urology, 128(2), pp. 426-428. (1982). https://doi.org/10.1016/S0022-5347(17)52952-3
  3. Buchanan, J. R., Mote, C. R. and Robinson, R. B., "Thermodynamics of struvite formation", Ameri. Soc. Agri. Eng., 37(2), pp. 617-621. (1994). https://doi.org/10.13031/2013.28121
  4. Ali, Md. I. and Schneider, P. A., "Afed-batch design approach of struvite system in controlled supersaturation", Chem. Eng. Sci., 61, pp. 3951-3961. (2006). https://doi.org/10.1016/j.ces.2006.01.028
  5. Won, S. Y., Bang, S. G. and Lee, S. I., "Removal of Nitrogen and Phosphorus Using Struvite Crystallization", Environ. Eng. Res., 22(4), 599-607. (2009).
  6. Jo, W. S., Yoon, S. J. and La, C. S., "Recovery of N and P Resources from Animal Wastewater by Struvite Crystallization", J. of Animal Sci. & Tech., 45(5), pp. 875-884. (2003). https://doi.org/10.5187/JAST.2003.45.5.875
  7. Kim, H. G., Kim, J. O. and Jung, J. T., "Removal of Nitrogen and Phosphorus in Anaerobic Fermentation Supernatant by Struvite Crystallization" J. of Geo-Environ. Soc., 7(6), pp. 5-12. (2006).
  8. Ryu, H. D., Jung, G. W. and Lee, S. I., "The Effect of Struvite Formation in Swine Wastewater on Nitrification", Environ. Eng. Res., 24(10), pp. 1682-1691. (2002).
  9. Ryu, H. D., Min, G., G. and Lee, S. I., "Effeiciency of Crystallization with Crystal Core in Struvite Crystallization", Environ. Eng. Res., 24(12), pp. 2203-2211. (2002).
  10. Kim, M. S., Ryu, H. D. and Lee, S. I., "Effect of Dosage Order in Struvite Crystallization of Landfill Leachates", Environ. Eng. Res., 24(2), pp. 269-275. (2002).
  11. Choi, W. J., Park, G., M., Yoon, B., G., Kim, M., C. and Oh, G., J., "Recovery of Presource from Sewage Sludge by a Struvite-forming Method", Environ. Eng. Res., 13(7), pp. 557-564. (2009).
  12. Gonzalez, P. R. and De Sa, M. E. G., "Evaluation of struvite as a fertilizer: a comparison with traditional P sources", Agrochimica, 51(6), pp. 301-308. (2007).
  13. Momberg, G. A. and Oellermann, R. A., "The removal of phosphate by hydroxyapatite and struvite crystallisation in south africa", Wat. Sci. & Tech., 26(5-6), pp. 987-996. (1992).
  14. Bouropoulos, N. C. and Koutsoukos, P. G., "Spontaneous precipitation of struvite from aqueous solution", J. of Crystal Growth, 213(3-4), pp. 381-388. (2000). https://doi.org/10.1016/S0022-0248(00)00351-1
  15. Le Corre, K. S., "Understanding struvite crystallization and recovery", Doctoral thesis, Cranfiled university, UK. (2006).
  16. Ohlinger, K. N., Young, T. M. and Schroeder, E. D., "Predicting struvite formation in digestion", Wat. Res., 32(12), pp. 3607-3614. (1998). https://doi.org/10.1016/S0043-1354(98)00123-7
  17. Doyle, J. D. and Pardons, S. A., "Struvite formation, control and recovery", Wat. Res, 36, pp. 3925-3940. (2002). https://doi.org/10.1016/S0043-1354(02)00126-4
  18. Le Corre, K. S., Valsami-Jones, E., Hobbs, P., Jefferson, b. and Parsons, S. A., "Struvite crystallisation and recovery using a stainless steel structure as a seed material", Wat. Res., 41, pp. 2449-2456. (2007). https://doi.org/10.1016/j.watres.2007.03.002
  19. Takanobu, M., Isao, O. and Shin, R. M., "Optimizing the dimensions of magnesium ammonium phosphate to maximize its ammonia uptake ability", Advanced Powder Technology, 24(2), pp. 520-524. (2012).