DOI QR코드

DOI QR Code

Carbon monoxide: present and future indications for a medical gas

  • Ryter, Stefan W. (Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School) ;
  • Choi, Augustine M.K. (Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School)
  • Published : 2013.03.01

Abstract

Gaseous molecules continue to hold new promise in molecular medicine as experimental and clinical therapeutics. The low molecular weight gas carbon monoxide (CO), and similar gaseous molecules (e.g., $H_2S$, nitric oxide) have been implicated as potential inhalation therapies in inflammatory diseases. At high concentration, CO represents a toxic inhalation hazard, and is a common component of air pollution. CO is also produced endogenously as a product of heme degradation catalyzed by heme oxygenase enzymes. CO binds avidly to hemoglobin, causing hypoxemia and decreased oxygen delivery to tissues at high concentrations. At physiological concentrations, CO may have endogenous roles as a signal transduction molecule in the regulation of neural and vascular function and cellular homeostasis. CO has been demonstrated to act as an effective anti-inflammatory agent in preclinical animal models of inflammation, acute lung injury, sepsis, ischemia/reperfusion injury, and organ transplantation. Additional experimental indications for this gas include pulmonary fibrosis, pulmonary hypertension, metabolic diseases, and preeclampsia. The development of chemical CO releasing compounds constitutes a novel pharmaceutical approach to CO delivery with demonstrated effectiveness in sepsis models. Current and pending clinical evaluation will determine the usefulness of this gas as a therapeutic in human disease.

Keywords

References

  1. Gentile MA. Inhaled medical gases: more to breathe than oxygen. Respir Care 2011;56:1341-1357. https://doi.org/10.4187/respcare.01442
  2. Kashiba M, Kajimura M, Goda N, Suematsu M. From $O_{2}$ to $H_{2}S$: a landscape view of gas biology. Keio J Med 2002;51:1-10. https://doi.org/10.2302/kjm.51.1
  3. Nakao A, Sugimoto R, Billiar TR, McCurry KR. Therapeutic antioxidant medical gas. J Clin Biochem Nutr 2009;44:1-13. https://doi.org/10.3164/jcbn.08-193R
  4. Bloch KD, Ichinose F, Roberts JD Jr, Zapol WM. Inhaled NO as a therapeutic agent. Cardiovasc Res 2007;75:339-348. https://doi.org/10.1016/j.cardiores.2007.04.014
  5. Ryter SW, Choi AM. Gaseous therapeutics in acute lung injury. Compr Physiol 2011;1:105-121.
  6. Ryter SW, Choi AM. Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am J Respir Cell Mol Biol 2009;41:251-260. https://doi.org/10.1165/rcmb.2009-0170TR
  7. Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 2006;86:583-650. https://doi.org/10.1152/physrev.00011.2005
  8. Ryter SW, Morse D, Choi AM. Carbon monoxide: to boldly go where NO has gone before. Sci STKE 2004;2004:RE6.
  9. Wu L, Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 2005;57:585-630. https://doi.org/10.1124/pr.57.4.3
  10. Ryter SW, Otterbein LE. Carbon monoxide in biology and medicine. Bioessays 2004;26:270-280. https://doi.org/10.1002/bies.20005
  11. Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 2010;9:728-743. https://doi.org/10.1038/nrd3228
  12. Kashfi K, Olson KR. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol 2013;85:689-703. https://doi.org/10.1016/j.bcp.2012.10.019
  13. Wagner F, Asfar P, Calzia E, Radermacher P, Szabo C. Bench-to-bedside review: hydrogen sulfide: the third gaseous transmitter: applications for critical care. Crit Care 2009;13:213. https://doi.org/10.1186/cc7700
  14. Liu YH, Yan CD, Bian JS. Hydrogen sulf ide: a novel signaling molecule in the vascular system. J Cardiovasc Pharmacol 2011;58:560-569. https://doi.org/10.1097/FJC.0b013e31820eb7a1
  15. Wang R. Two's company, three's a crowd: can $H_2S$ be the third endogenous gaseous transmitter? FASEB J 2002;16:1792-1798. https://doi.org/10.1096/fj.02-0211hyp
  16. Moody BF, Calvert JW. Emergent role of gasotransmitters in ischemia-reperfusion injury. Med Gas Res 2011;1:3. https://doi.org/10.1186/2045-9912-1-3
  17. Wink DA, Mitchell JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 1998;25:434-456. https://doi.org/10.1016/S0891-5849(98)00092-6
  18. Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A 1968;61:748-755. https://doi.org/10.1073/pnas.61.2.748
  19. Tenhunen R, Marver HS, Schmid R. Microsomal heme oxygenase: characterization of the enzyme. J Biol Chem 1969;244:6388-6394.
  20. Keyse SM, Tyrrell RM. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci U S A 1989;86:99-103. https://doi.org/10.1073/pnas.86.1.99
  21. Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 1997;37:517-554. https://doi.org/10.1146/annurev.pharmtox.37.1.517
  22. Maines MD, Trakshel GM, Kutty RK. Characterization of two constitutive forms of rat liver microsomal heme oxygenase: only one molecular species of the enzyme is inducible. J Biol Chem 1986;261:411-419.
  23. Vandiver M, Snyder SH. Hydrogen sulf ide: a gasotransmitter of clinical relevance. J Mol Med (Berl) 2012;90:255-263. https://doi.org/10.1007/s00109-012-0873-4
  24. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 1987;84:9265-9269. https://doi.org/10.1073/pnas.84.24.9265
  25. Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 1987;61:866-879. https://doi.org/10.1161/01.RES.61.6.866
  26. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109-142.
  27. Ignarro LJ. Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci Rep 1999;19:51-71. https://doi.org/10.1023/A:1020150124721
  28. Snyder SH, Bredt DS. Biological roles of nitric oxide. Sci Am 1992;266:68-77.
  29. Derbyshire ER, Marletta MA. Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem 2012;81:533-559. https://doi.org/10.1146/annurev-biochem-050410-100030
  30. Ichinose F, Roberts JD Jr, Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation 2004;109:3106-3111. https://doi.org/10.1161/01.CIR.0000134595.80170.62
  31. Frostell C, Fratacci MD, Wain JC, Jones R, Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 1991;83:2038-2047. https://doi.org/10.1161/01.CIR.83.6.2038
  32. Rossaint R, Falke KJ, Lopez F, Slama K, Pison U, Zapol WM. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 1993;328:399-405. https://doi.org/10.1056/NEJM199302113280605
  33. Porta NF, Steinhorn RH. Pulmonary vasodilator therapy in the NICU: inhaled nitric oxide, sildenafil, and other pulmonary vasodilating agents. Clin Perinatol 2012;39:149-164. https://doi.org/10.1016/j.clp.2011.12.006
  34. Hartsf ield CL. Cross talk between carbon monoxide and nitric oxide. Antioxid Redox Signal 2002;4:301-307. https://doi.org/10.1089/152308602753666352
  35. Piantadosi CA. Biological chemistry of carbon monoxide. Antioxid Redox Signal 2002;4:259-270. https://doi.org/10.1089/152308602753666316
  36. Sjostrand T. The formation of carbon monoxide by the decomposition of haemoglobin in vivo. Acta Physiol Scand 1952;26:338-344. https://doi.org/10.1111/j.1748-1716.1952.tb00915.x
  37. Sjostrand T. Endogenous production of carbon monoxide in man under normal and pathophysiological conditions. Scand J Clin Lab Invest 1949;1:201-214. https://doi.org/10.3109/00365514909069943
  38. Coburn RF, Blakemore WS, Forster RE. Endogenous carbon monoxide production in man. J Clin Invest 1963;42:1172-1178. https://doi.org/10.1172/JCI104802
  39. Tenhunen R, Marver HS, Schmid R. The enzymatic catabolism of hemoglobin: stimulation of microsomal heme oxygenase by hemin. J Lab Clin Med 1970;75:410-421.
  40. Kageyama H, Hiwasa T, Tokunaga K, Sakiyama S. Isolation and characterization of a complementary DNA clone for a Mr 32,000 protein which is induced with tumor promoters in BALB/c 3T3 cells. Cancer Res 1988;48:4795-4798.
  41. Keyse SM, Tyrrell RM. Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts. J Biol Chem 1987;262:14821-14825.
  42. Applegate LA, Luscher P, Tyrrell RM. Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res 1991;51:974-978.
  43. Otterbein LE, Bach FH, Alam J, et al. Carbon monoxide has anti-inf lammatory effects involving the mitogenactivated protein kinase pathway. Nat Med 2000;6:422-428. https://doi.org/10.1038/74680
  44. Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH. Carbon monoxide: a putative neural messenger. Science 1993;259:381-384. https://doi.org/10.1126/science.7678352
  45. Brouard S, Otterbein LE, Anrather J, et al. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med 2000;192:1015-1026. https://doi.org/10.1084/jem.192.7.1015
  46. Kim HP, Ryter SW, Choi AM. CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 2006;46:411-449. https://doi.org/10.1146/annurev.pharmtox.46.120604.141053
  47. Durante W, Johnson FK, Johnson RA. Role of carbon monoxide in cardiovascular function. J Cell Mol Med 2006;10:672-686. https://doi.org/10.1111/j.1582-4934.2006.tb00427.x
  48. Suematsu M, Kashiwagi S, Sano T, Goda N, Shinoda Y, Ishimura Y. Carbon monoxide as an endogenous modulator of hepatic vascular perfusion. Biochem Biophys Res Commun 1994;205:1333-1337. https://doi.org/10.1006/bbrc.1994.2811
  49. Morita T, Mitsialis SA, Koike H, Liu Y, Kourembanas S. Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J Biol Chem 1997;272:32804-32809. https://doi.org/10.1074/jbc.272.52.32804
  50. Suliman HB, Carraway MS, Tatro LG, Piantadosi CA. A new activating role for CO in cardiac mitochondrial biogenesis. J Cell Sci 2007;120(Pt 2):299-308. https://doi.org/10.1242/jcs.03318
  51. Lee SJ, Ryter SW, Xu JF, et al. Carbon monoxide activates autophagy via mitochondrial reactive oxygen species formation. Am J Respir Cell Mol Biol 2011;45:867-873. https://doi.org/10.1165/rcmb.2010-0352OC
  52. Otterbein LE, Mantell LL, Choi AM. Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol 1999;276(4 Pt 1):L688-L694.
  53. Otterbein LE, Otterbein SL, Ifedigbo E, et al. MKK3 mitogen-activated protein kinase pathway mediates carbon monoxide-induced protection against oxidantinduced lung injury. Am J Pathol 2003;163:2555-2563. https://doi.org/10.1016/S0002-9440(10)63610-3
  54. Dolinay T, Szilasi M, Liu M, Choi AM. Inhaled carbon monoxide confers antiinf lammatory effects against ventilator-induced lung injury. Am J Respir Crit Care Med 2004;170:613-620. https://doi.org/10.1164/rccm.200401-023OC
  55. Zhang X, Shan P, Alam J, Davis RJ, Flavell RA, Lee PJ. Carbon monoxide modulates Fas/Fas ligand, caspases, and Bcl-2 family proteins via the p38alpha mitogenactivated protein kinase pathway during ischemiareperfusion lung injury. J Biol Chem 2003;278:22061-22070. https://doi.org/10.1074/jbc.M301858200
  56. Zhang X, Shan P, Otterbein LE, et al. Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3. J Biol Chem 2003;278:1248-1258. https://doi.org/10.1074/jbc.M208419200
  57. MacGarvey NC, Suliman HB, Bartz RR, et al. Activation of mitochondrial biogenesis by heme oxygenase-1-mediated NF-E2-related factor-2 induction rescues mice from lethal Staphylococcus aureus sepsis. Am J Respir Crit Care Med 2012;185:851-861. https://doi.org/10.1164/rccm.201106-1152OC
  58. Otterbein LE, Zuckerbraun BS, Haga M, et al. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 2003;9:183-190. https://doi.org/10.1038/nm817
  59. Sato K, Balla J, Otterbein L, et al. Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol 2001;166:4185-4194. https://doi.org/10.4049/jimmunol.166.6.4185
  60. Song R, Kubo M, Morse D, et al. Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via anti-inf lammatory and anti-apoptotic effects. Am J Pathol 2003;163:231-242. https://doi.org/10.1016/S0002-9440(10)63646-2
  61. Ryter SW, Choi AM. Heme oxygenase-1/carbon monoxide: novel therapeutic strategies in critical care medicine. Curr Drug Targets 2010;11:1485-1494. https://doi.org/10.2174/1389450111009011485
  62. Whiteman M, Le Trionnaire S, Chopra M, Fox B, Whatmore J. Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin Sci (Lond) 2011;121:459-488. https://doi.org/10.1042/CS20110267
  63. Yang G, Wu L, Jiang B, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 2008;322:587-590. https://doi.org/10.1126/science.1162667
  64. Kimura H. Hydrogen sulfide as a neuromodulator. Mol Neurobiol 2002;26:13-19. https://doi.org/10.1385/MN:26:1:013
  65. Szabo C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 2007;6:917-935. https://doi.org/10.1038/nrd2425
  66. Lowicka E, Beltowski J. Hydrogen sulf ide (H2S): the third gas of interest for pharmacologists. Pharmacol Rep 2007;59:4-24.
  67. Faller S, Spassov SG, Zimmermann KK, et al. Hydrogen sulfide prevents hyperoxia-induced lung injury by downregulating reactive oxygen species formation and angiopoietin-2 release. Curr Pharm Des. 2012 Oct 18 [Epub].
  68. Faller S, Ryter SW, Choi AM, Loop T, Schmidt R, Hoetzel A. Inhaled hydrogen sulfide protects against ventilator-induced lung injury. Anesthesiology 2010;113:104-115. https://doi.org/10.1097/ALN.0b013e3181de7107
  69. Spiller F, Orrico MI, Nascimento DC, et al. Hydrogen sulfide improves neutrophil migration and survival in sepsis via K+ATP channel activation. Am J Respir Crit Care Med 2010;182:360-368. https://doi.org/10.1164/rccm.200907-1145OC
  70. Von Burg R. Ca rbon monox ide. J Appl Tox icol 1999;19:379-386. https://doi.org/10.1002/(SICI)1099-1263(199909/10)19:5<379::AID-JAT563>3.0.CO;2-8
  71. Penney D, Benignus V, Kephalopoulos S, Kotzias D, Kleinman M, Verrier A. Carbon monoxide. In: World Health Organization, ed. WHO Guidelines for Indoor Air Quality: Selected Pollutants. Copenhagen: WHO, 2010:55.
  72. Raub J. Environmental Health Criteria 213. Carbon Monoxide Second Edition. Geneva: WHO, 1999, 70.
  73. Smith RP. Toxic responses of the blood. In: Casarett LJ, Doull J, Klaassen CD, Amdur MO, eds. Casarett and Doull's Toxicology: the Basic Science of Poisons. 3rd ed. New York: Macmillan, 1986:223-224.
  74. Gorman D, Drewry A, Huang YL, Sames C. The clinical toxicology of carbon monoxide. Toxicology 2003;187:25-38. https://doi.org/10.1016/S0300-483X(03)00005-2
  75. Piantadosi CA. Diagnosis and treatment of carbon monoxide poisoning. Respir Care Clin N Am 1999;5:183-202.
  76. Rudra CB, Williams MA, Sheppard L, et al. Relation of whole blood carboxyhemoglobin concentration to ambient carbon monoxide exposure estimated using regression. Am J Epidemiol 2010;171:942-951. https://doi.org/10.1093/aje/kwq022
  77. Russell MA. Blood carboxyhaemoglobin changes during tobacco smoking. Postgrad Med J 1973;49:684-687. https://doi.org/10.1136/pgmj.49.576.684
  78. Samoli E, Touloumi G, Schwartz J, et al. Short-term effects of carbon monoxide on mortality: an analysis within the APHEA project. Environ Health Perspect 2007;115:1578-1583. https://doi.org/10.1289/ehp.10375
  79. Reboul C, Thireau J, Meyer G, et al. Carbon monoxide exposure in the urban environment: an insidious foe for the heart? Respir Physiol Neurobiol 2012;184:204-212. https://doi.org/10.1016/j.resp.2012.06.010
  80. Kutty RK, Daniel RF, Ryan DE, Levin W, Maines MD. Rat liver cytochrome P-450b, P-420b, and P-420c are degraded to biliverdin by heme oxygenase. Arch Biochem Biophys 1988;260:638-644. https://doi.org/10.1016/0003-9861(88)90492-4
  81. Tenhunen R, Ross ME, Marver HS, Schmid R. Reduced nicotinamide-adenine dinucleotide phosphate dependent biliverdin reductase: partial purification and characterization. Biochemistry 1970;9:298-303. https://doi.org/10.1021/bi00804a016
  82. Vreman HJ, Wong RJ, Stevenson DK. Carbon monoxide in breath, blood, and other tissues. In: Penney DG, ed. Carbon Monoxide Toxicity. Boca Raton: CRC Press, 2000:19-60.
  83. Cruse I, Maines MD. Evidence suggesting that the two forms of heme oxygenase are products of different genes. J Biol Chem 1988;263:3348-3353.
  84. Lee PJ, Jiang BH, Chin BY, et al. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 1997;272:5375-5381. https://doi.org/10.1074/jbc.272.9.5375
  85. Lee PJ, Alam J, Sylvester SL, Inamdar N, Otterbein L, Choi AM. Regulation of heme oxygenase-1 expression in vivo and in vitro in hyperoxic lung injury. Am J Respir Cell Mol Biol 1996;14:556-568. https://doi.org/10.1165/ajrcmb.14.6.8652184
  86. Shibahara S, Muller RM, Taguchi H. Transcriptional control of rat heme oxygenase by heat shock. J Biol Chem 1987;262:12889-12892.
  87. Alam J, Shibahara S, Smith A. Transcriptional activation of the heme oxygenase gene by heme and cadmium in mouse hepatoma cells. J Biol Chem 1989;264:6371-6375.
  88. Keyse SM, Applegate LA, Tromvoukis Y, Tyrrell RM. Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts. Mol Cell Biol 1990;10:4967-4969. https://doi.org/10.1128/MCB.10.9.4967
  89. Alam J, Cai J, Smith A. Isolation and characterization of the mouse heme oxygenase-1 gene: distal 5' sequences are required for induction by heme or heavy metals. J Biol Chem 1994;269:1001-1009.
  90. Alam J, Camhi S, Choi AM. Identification of a second region upstream of the mouse heme oxygenase-1 gene that functions as a basal level and inducer-dependent transcription enhancer. J Biol Chem 1995;270:11977-11984. https://doi.org/10.1074/jbc.270.20.11977
  91. Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL. Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 1999;274:26071-26078. https://doi.org/10.1074/jbc.274.37.26071
  92. Alam J, Wicks C, Stewart D, et al. Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells: role of p38 kinase and Nrf2 transcription factor. J Biol Chem 2000;275:27694-27702.
  93. Itoh K, Wakabayashi N, Katoh Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 1999;13:76-86. https://doi.org/10.1101/gad.13.1.76
  94. Kobayashi A, Kang MI, Okawa H, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 2004;24:7130-7139. https://doi.org/10.1128/MCB.24.16.7130-7139.2004
  95. Ogawa K, Sun J, Taketani S, et al. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J 2001;20:2835-2843. https://doi.org/10.1093/emboj/20.11.2835
  96. Sun J, Hoshino H, Takaku K, et al. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J 2002;21:5216-5224. https://doi.org/10.1093/emboj/cdf516
  97. Alam J, Igarashi K, Immenschuh S, Shibahara S, Tyrrell RM. Regulation of heme oxygenase-1 gene transcription: recent advances and highlights from the International Conference (Uppsala, 2003) on Heme Oxygenase. Antioxid Redox Signal 2004;6:924-933. https://doi.org/10.1089/ars.2004.6.924
  98. Alam J, Cook JL. How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am J Respir Cell Mol Biol 2007;36:166-174. https://doi.org/10.1165/rcmb.2006-0340TR
  99. Stone JR, Marletta MA. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry 1994;33:5636-5640. https://doi.org/10.1021/bi00184a036
  100. Furchgott RF, Jothianandan D. Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 1991;28:52-61.
  101. Suematsu M, Goda N, Sano T, et al. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. J Clin Invest 1995;96:2431-2437. https://doi.org/10.1172/JCI118300
  102. Wang R. Resurgence of carbon monoxide: an endogenous gaseous vasorelaxing factor. Can J Physiol Pharmacol 1998;76:1-15. https://doi.org/10.1139/y97-187
  103. Nakahira K, Kim HP, Geng XH, et al. Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med 2006;203:2377-2389. https://doi.org/10.1084/jem.20060845
  104. Kim HP, Wang X, Zhang J, et al. Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38 beta MAPK and heat shock factor-1. J Immunol 2005;175:2622-2629. https://doi.org/10.4049/jimmunol.175.4.2622
  105. Bilban M, Bach FH, Otterbein SL, et al. Carbon monoxide orchestrates a protective response through PPARgamma. Immunity 2006;24:601-610. https://doi.org/10.1016/j.immuni.2006.03.012
  106. Brouard S, Berberat PO, Tobiasch E, Seldon MP, Bach FH, Soares MP. Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-kappa B to protect endothelial cells from tumor necrosis factor-alpha-mediated apoptosis. J Biol Chem 2002;277:17950-17961. https://doi.org/10.1074/jbc.M108317200
  107. Zhang X, Shan P, Alam J, Fu XY, Lee PJ. Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. J Biol Chem 2005;280:8714-8721. https://doi.org/10.1074/jbc.M408092200
  108. Wang X, Wang Y, Kim HP, Nakahira K, Ryter SW, Choi AM. Carbon monoxide protects against hyperoxia-induced endothelial cell apoptosis by inhibiting reactive oxygen species formation. J Biol Chem 2007;282:1718-1726. https://doi.org/10.1074/jbc.M607610200
  109. Wang X, Wang Y, Lee SJ, Kim HP, Choi AM, Ryter SW. Carbon monoxide inhibits Fas activating antibodyinduced apoptosis in endothelial cells. Med Gas Res 2011;1:8. https://doi.org/10.1186/2045-9912-1-8
  110. Morita T, Perrella MA, Lee ME, Kourembanas S. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci U S A 1995;92:1475-1479. https://doi.org/10.1073/pnas.92.5.1475
  111. Morita T, Kourembanas S. Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide. J Clin Invest 1995;96:2676-2682. https://doi.org/10.1172/JCI118334
  112. Kim HP, Wang X, Nakao A, et al. Caveolin-1 expression by means of p38beta mitogen-activated protein kinase mediates the antiproliferative effect of carbon monoxide. Proc Natl Acad Sci U S A 2005;102:11319-11324. https://doi.org/10.1073/pnas.0501345102
  113. Taille C, El-Benna J, Lanone S, Boczkowski J, Motterlini R. Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. J Biol Chem 2005;280:25350-25360. https://doi.org/10.1074/jbc.M503512200
  114. Rodriguez AI, Gangopadhyay A, Kelley EE, Pagano PJ, Zuckerbraun BS, Bauer PM. HO-1 and CO decrease platelet-derived growth factor-induced vascular smooth muscle cell migration via inhibition of Nox1. Arterioscler Thromb Vasc Biol 2010;30:98-104. https://doi.org/10.1161/ATVBAHA.109.197822
  115. Morse D, Pischke SE, Zhou Z, et al. Suppression of inf lammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J Biol Chem 2003;278:36993-36998. https://doi.org/10.1074/jbc.M302942200
  116. Mazzola S, Forni M, Albertini M, et al. Carbon monoxide pretreatment prevents respiratory derangement and ameliorates hyperacute endotoxic shock in pigs. FASEB J 2005;19:2045-2047. https://doi.org/10.1096/fj.05-3782fje
  117. Mitchell LA, Channell MM, Royer CM, Ryter SW, Choi AM, McDonald JD. Evaluation of inhaled carbon monoxide as an anti-inflammatory therapy in a nonhuman primate model of lung inf lammation. Am J Physiol Lung Cell Mol Physiol 2010;299:L891-L897. https://doi.org/10.1152/ajplung.00366.2009
  118. Ghosh S, Wilson MR, Choudhury S, et al. Effects of inhaled carbon monoxide on acute lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2005;288:L1003-L1009. https://doi.org/10.1152/ajplung.00451.2004
  119. Clayton CE, Carraway MS, Suliman HB, et al. Inhaled carbon monoxide and hyperoxic lung injury in rats. Am J Physiol Lung Cell Mol Physiol 2001;281:L949-L957. https://doi.org/10.1152/ajplung.2001.281.4.L949
  120. Fernandez-Gonzalez A, Alex Mitsialis S, Liu X, Kourembanas S. Vasculoprotective effects of heme oxygenase-1 in a murine model of hyperoxia-induced bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2012;302:L775-L784. https://doi.org/10.1152/ajplung.00196.2011
  121. Hoetzel A, Schmidt R, Vallbracht S, et al. Carbon monoxide prevents ventilator-induced lung injury via caveolin-1. Crit Care Med 2009;37:1708-1715. https://doi.org/10.1097/CCM.0b013e31819efa31
  122. Hoetzel A, Dolinay T, Vallbracht S, et al. Carbon monoxide protects against ventilator-induced lung injury via PPAR-gamma and inhibition of Egr-1. Am J Respir Crit Care Med 2008;177:1223-1232. https://doi.org/10.1164/rccm.200708-1265OC
  123. Faller S, Foeckler M, Strosing KM, et al. Kinetic effects of carbon monoxide inhalation on tissue protection in ventilator-induced lung injury. Lab Invest 2012;92:999-1012. https://doi.org/10.1038/labinvest.2012.55
  124. Fujita T, Toda K, Karimova A, et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med 2001;7:598-604. https://doi.org/10.1038/87929
  125. Mishra S, Fujita T, Lama VN, et al. Carbon monoxide rescues ischemic lungs by interrupting MAPKdriven expression of early growth response 1 gene and its downstream target genes. Proc Natl Acad Sci U S A 2006;103:5191-5196. https://doi.org/10.1073/pnas.0600241103
  126. Schallner N, Fuchs M, Schwer CI, et al. Postconditioning with inhaled carbon monoxide counteracts apoptosis and neuroinflammation in the ischemic rat retina. PLoS One 2012;7:e46479. https://doi.org/10.1371/journal.pone.0046479
  127. Nakao A, Kimizuka K, Stolz DB, et al. Protective effect of carbon monoxide inhalation for cold-preserved small intestinal grafts. Surgery 2003;134:285-292. https://doi.org/10.1067/msy.2003.238
  128. Faleo G, Neto JS, Kohmoto J, et al. Carbon monoxide ameliorates renal cold ischemia-reperfusion injury with an upregulation of vascular endothelial growth factor by activation of hypoxia-inducible factor. Transplantation 2008;85:1833-1840. https://doi.org/10.1097/TP.0b013e31817c6f63
  129. Kaizu T, Nakao A, Tsung A, et al. Carbon monoxide inhalation ameliorates cold ischemia/reperfusion injury after rat liver transplantation. Surgery 2005;138:229-235. https://doi.org/10.1016/j.surg.2005.06.015
  130. Kohmoto J, Nakao A, Kaizu T, et al. Low-dose carbon monoxide inhalation prevents ischemia/reperfusion injury of transplanted rat lung grafts. Surgery 2006;140:179-185. https://doi.org/10.1016/j.surg.2006.03.004
  131. Kohmoto J, Nakao A, Sugimoto R, et al. Carbon monoxide-saturated preservation solution protects lung grafts from ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2008;136:1067-1075. https://doi.org/10.1016/j.jtcvs.2008.06.026
  132. Nakao A, Toyokawa H, Tsung A, et al. Ex vivo application of carbon monoxide in University of Wisconsin solution to prevent intestinal cold ischemia/reperfusion injury. Am J Transplant 2006;6:2243-2255. https://doi.org/10.1111/j.1600-6143.2006.01465.x
  133. Pannen BH, Kohler N, Hole B, Bauer M, Clemens MG, Geiger KK. Protective role of endogenous carbon monoxide in hepatic microcirculatory dysfunction after hemorrhagic shock in rats. J Clin Invest 1998;102:1220-1228. https://doi.org/10.1172/JCI3428
  134. Amersi F, Shen XD, Anselmo D, et al. Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology 2002;35:815-823. https://doi.org/10.1053/jhep.2002.32467
  135. Christou H, Morita T, Hsieh CM, et al. Prevention of hypoxia-induced pulmonary hypertension by enhancement of endogenous heme oxygenase-1 in the rat. Circ Res 2000;86:1224-1229. https://doi.org/10.1161/01.RES.86.12.1224
  136. Minamino T, Christou H, Hsieh CM, et al. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci U S A 2001;98:8798-8803. https://doi.org/10.1073/pnas.161272598
  137. Yet SF, Perrella MA, Layne MD, et al. Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J Clin Invest 1999;103:R23-R29. https://doi.org/10.1172/JCI6163
  138. Zuckerbraun BS, Chin BY, Wegiel B, et al. Carbon monoxide reverses established pulmonary hypertension. J Exp Med 2006;203:2109-2119. https://doi.org/10.1084/jem.20052267
  139. Dubuis E, Potier M, Wang R, Vandier C. Continuous inhalation of carbon monoxide attenuates hypoxic pulmonary hypertension development presumably through activation of BKCa channels. Cardiovasc Res 2005;65:751-761. https://doi.org/10.1016/j.cardiores.2004.11.007
  140. Selman M, King TE, Pardo A; American Thoracic Society; European Respiratory Society; American College of Chest Physicians. Idiopathic pulmonary f ibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001;134:136-151. https://doi.org/10.7326/0003-4819-134-2-200101160-00015
  141. Zhou Z, Song R, Fattman CL, et al. Carbon monoxide suppresses bleomycin-induced lung f ibrosis. Am J Pathol 2005;166:27-37. https://doi.org/10.1016/S0002-9440(10)62229-8
  142. Choi KM, Gibbons SJ, Nguyen TV, et al. Heme oxygenase-1 protects interstitial cells of Cajal from oxidative stress and reverses diabetic gastroparesis. Gastroenterology 2008;135:2055-2064. https://doi.org/10.1053/j.gastro.2008.09.003
  143. Kashyap PC, Choi KM, Dutta N, et al. Carbon monoxide reverses diabetic gastroparesis in NOD mice. Am J Physiol Gastrointest Liver Physiol 2010;298:G1013-G1019. https://doi.org/10.1152/ajpgi.00069.2010
  144. Rodella L, Lamon BD, Rezzani R, et al. Carbon monoxide and biliverdin prevent endothelial cell sloughing in rats with type I diabetes. Free Radic Biol Med 2006;40:2198-2205. https://doi.org/10.1016/j.freeradbiomed.2006.02.018
  145. Simon T, Pogu S, Tardif V, et al. Carbon monoxidetreated dendritic cells decrease beta1-integrin induction on CD8(+) T cells and protect from type 1 diabetes. Eur J Immunol 2013;43:209-218. https://doi.org/10.1002/eji.201242684
  146. Gunther L, Berberat PO, Haga M, et al. Carbon monoxide protects pancreatic beta-cells from apoptosis and improves islet function/survival after transplantation. Diabetes 2002;51:994-999. https://doi.org/10.2337/diabetes.51.4.994
  147. Wang H, Lee SS, Gao W, et al. Donor treatment with carbon monoxide can yield islet allograft survival and tolerance. Diabetes 2005;54:1400-1406. https://doi.org/10.2337/diabetes.54.5.1400
  148. Joe Y, Zheng M, Kim SK, et al. The role of carbon monoxide in metabolic disease. Ann N Y Acad Sci 2011;1229:156-161. https://doi.org/10.1111/j.1749-6632.2011.06121.x
  149. Lancel S, Montaigne D, Marechal X, et al. Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome. PLoS One 2012;7:e41836. https://doi.org/10.1371/journal.pone.0041836
  150. Bainbridge SA, Sidle EH, Smith GN. Direct placental effects of cigarette smoke protect women from preeclampsia: the specific roles of carbon monoxide and antioxidant systems in the placenta. Med Hypotheses 2005;64:17-27. https://doi.org/10.1016/j.mehy.2004.06.019
  151. Ahmed A, Rahman M, Zhang X, et al. Induction of placental heme oxygenase-1 is protective against TNFalpha-induced cytotoxicity and promotes vessel relaxation. Mol Med 2000;6:391-409.
  152. Yusuf K, Kamaluddeen M, Wilson RD, Akierman A. Carboxyhemoglobin levels in umbilical cord blood of women with pre-eclampsia and intrauterine growth restriction. J Perinat Med 2012 Jun 24 [Epub]. http://dx.doi.org/10.1515/jpm-2011-0312.
  153. Bainbridge SA, Belkacemi L, Dickinson M, Graham CH, Smith GN. Carbon monoxide inhibits hypoxia/reoxygenation-induced apoptosis and secondary necrosis in syncytiotrophoblast. Am J Pathol 2006;169:774-783. https://doi.org/10.2353/ajpath.2006.060184
  154. Zhai D, Guo Y, Smith G, Krewski D, Walker M, Wen SW. Maternal exposure to moderate ambient carbon monoxide is associated with decreased risk of preeclampsia. Am J Obstet Gynecol 2012;207:57. https://doi.org/10.1016/j.ajog.2012.06.075
  155. Motterlini R, Mann BE, Foresti R. Therapeutic applications of carbon monoxide-releasing molecules. Expert Opin Investig Drugs 2005;14:1305-1318. https://doi.org/10.1517/13543784.14.11.1305
  156. Foresti R, Bani-Hani MG, Motterlini R. Use of carbon monoxide as a therapeutic agent: promises and challenges. Intensive Care Med 2008;34:649-658. https://doi.org/10.1007/s00134-008-1011-1
  157. Motterlini R, Sawle P, Hammad J, et al. CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J 2005;19:284-286. https://doi.org/10.1096/fj.04-2169fje
  158. Kretschmer R, Gessner G, Gorls H, Heinemann SH, Westerhausen M. Dicarbonyl-bis(cysteamine)iron(II): a light induced carbon monoxide releasing molecule based on iron (CORM-S1). J Inorg Biochem 2011;105:6-9. https://doi.org/10.1016/j.jinorgbio.2010.10.006
  159. Hasegawa U, van der Vlies AJ, Simeoni E, Wandrey C, Hubbell JA. Carbon monoxide-releasing micelles for immunotherapy. J Am Chem Soc 2010;132:18273-18280. https://doi.org/10.1021/ja1075025
  160. Motterlini R, Sawle P, Hammad J, et al. Vasorelaxing effects and inhibition of nitric oxide in macrophages by new iron-containing carbon monoxide-releasing molecules (CO-RMs). Pharmacol Res 2013;68:108-117. https://doi.org/10.1016/j.phrs.2012.12.001
  161. Foresti R, Hammad J, Clark JE, et al. Vasoactive properties of CORM-3, a novel water-soluble carbon monoxidereleasing molecule. Br J Pharmacol 2004;142:453-460. https://doi.org/10.1038/sj.bjp.0705825
  162. Sawle P, Foresti R, Mann BE, Johnson TR, Green CJ, Motterlini R. Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. Br J Pharmacol 2005;145:800-810. https://doi.org/10.1038/sj.bjp.0706241
  163. Sun B, Zou X, Chen Y, Zhang P, Shi G. Preconditioning of carbon monoxide releasing molecule-derived CO attenuates LPS-induced activation of HUVEC. Int J Biol Sci 2008;4:270-278.
  164. Sun B, Sun H, Liu C, Shen J, Chen Z, Chen X. Role of CO-releasing molecules liberated CO in attenuating leukocytes sequestration and inf lammatory responses in the lung of thermally injured mice. J Surg Res 2007;139:128-135. https://doi.org/10.1016/j.jss.2006.08.032
  165. Cepinskas G, Katada K, Bihari A, Potter RF. Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice. Am J Physiol Gastrointest Liver Physiol 2008;294:G184-G191. https://doi.org/10.1152/ajpgi.00348.2007
  166. Mizuguchi S, Stephen J, Bihari R, et al. CORM-3-derived CO modulates polymorphonuclear leukocyte migration across the vascular endothelium by reducing levels of cell surface-bound elastase. Am J Physiol Heart Circ Physiol 2009;297:H920-H929. https://doi.org/10.1152/ajpheart.00305.2009
  167. Lancel S, Hassoun SM, Favory R, Decoster B, Motterlini R, Neviere R. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther 2009;329:641-648. https://doi.org/10.1124/jpet.108.148049
  168. Musameh MD, Green CJ, Mann BE, Fuller BJ, Motterlini R. Improved myocardial function after cold storage with preservation solution supplemented with a carbon monoxide-releasing molecule (CORM-3). J Heart Lung Transplant 2007;26:1192-1198. https://doi.org/10.1016/j.healun.2007.08.005
  169. Mayr FB, Spiel A, Leitner J, et al. Effects of carbon monoxide inhalation during experimental endotoxemia in humans. Am J Respir Crit Care Med 2005;171:354-360. https://doi.org/10.1164/rccm.200404-446OC
  170. Bathoorn E, Slebos DJ, Postma DS, et al. Anti-inf lammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study. Eur Respir J 2007;30:1131-1137. https://doi.org/10.1183/09031936.00163206

Cited by

  1. Effect of Carbon Monoxide-Releasing Molecules II-liberated CO on Suppressing Inflammatory Response in Sepsis by Interfering with Nuclear Factor Kappa B Activation vol.8, pp.10, 2013, https://doi.org/10.1371/journal.pone.0075840
  2. Rapid CO release from a Mn(I) carbonyl complex derived from azopyridine upon exposure to visible light and its phototoxicity toward malignant cells vol.49, pp.96, 2013, https://doi.org/10.1039/c3cc46558f
  3. Photodelivery of CO by Designed PhotoCORMs: Correlation between Absorption in the Visible Region and Metal-CO Bond Labilization in Carbonyl Complexes vol.9, pp.6, 2014, https://doi.org/10.1002/cmdc.201402007
  4. Exogenous carbon monoxide suppresses Escherichia coli vitality and improves survival in an Escherichia coli-induced murine sepsis model vol.35, pp.12, 2013, https://doi.org/10.1038/aps.2014.99
  5. Carbon monoxide down-regulates α4β1 integrin-specific ligand binding and cell adhesion: a possible mechanism for cell mobilization vol.15, pp.None, 2013, https://doi.org/10.1186/s12865-014-0052-1
  6. Lower Obesity Rate during Residence at High Altitude among a Military Population with Frequent Migration: A Quasi Experimental Model for Investigating Spatial Causation vol.9, pp.4, 2013, https://doi.org/10.1371/journal.pone.0093493
  7. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases vol.12, pp.None, 2013, https://doi.org/10.1186/s12979-015-0046-8
  8. Extracellular hemoglobin: the case of a friend turned foe vol.6, pp.None, 2013, https://doi.org/10.3389/fphys.2015.00096
  9. CO and CO-releasing molecules (CO-RMs) in acute gastrointestinal inflammation : CO in acute GI inflammation vol.172, pp.6, 2013, https://doi.org/10.1111/bph.12632
  10. Kidneys From α1,3-Galactosyltransferase Knockout/Human Heme Oxygenase-1/Human A20 Transgenic Pigs Are Protected From Rejection During Ex Vivo Perfusion With Human Blood vol.1, pp.6, 2013, https://doi.org/10.1097/txd.0000000000000533
  11. The Effects of Heme Oxygenase By-Products on the Proliferation and Invasion of HUVECs, HTR-8/SVneo Cells, 3A(tPA 30-1) Cells, and HESCs Under Varying Oxygen Concentrations vol.22, pp.12, 2015, https://doi.org/10.1177/1933719115589415
  12. Carbon Monoxide-Releasing Molecule-2 Reduces Intestinal Epithelial Tight-Junction Damage and Mortality in Septic Rats vol.10, pp.12, 2013, https://doi.org/10.1371/journal.pone.0145988
  13. Carbon monoxide in the treatment of sepsis vol.309, pp.12, 2013, https://doi.org/10.1152/ajplung.00311.2015
  14. The production of multi-transgenic pigs: update and perspectives for xenotransplantation vol.25, pp.3, 2016, https://doi.org/10.1007/s11248-016-9934-8
  15. The relationship between ambient carbon monoxide and heart rate variability—a systematic world review—2015 vol.23, pp.21, 2013, https://doi.org/10.1007/s11356-016-7533-0
  16. Carbon Monoxide Improves Efficacy of Mesenchymal Stromal Cells During Sepsis by Production of Specialized Proresolving Lipid Mediators* vol.44, pp.12, 2013, https://doi.org/10.1097/ccm.0000000000001999
  17. Effects of carbon monoxide-releasing molecules on pulmonary vasoreactivity in isolated perfused lungs vol.120, pp.2, 2013, https://doi.org/10.1152/japplphysiol.00726.2015
  18. Bactericidal Effect of a Photoresponsive Carbon Monoxide-Releasing Nonwoven against Staphylococcus aureus Biofilms vol.60, pp.7, 2016, https://doi.org/10.1128/aac.00703-16
  19. Light-triggered CO delivery by a water-soluble and biocompatible manganese photoCORM vol.45, pp.33, 2016, https://doi.org/10.1039/c6dt01358a
  20. Fluorescent Probe Based on Azobenzene-Cyclopalladium for the Selective Imaging of Endogenous Carbon Monoxide under Hypoxia Conditions vol.88, pp.22, 2013, https://doi.org/10.1021/acs.analchem.6b03376
  21. Mesenchymal Stromal Cells Deficient in Autophagy Proteins Are Susceptible to Oxidative Injury and Mitochondrial Dysfunction vol.56, pp.3, 2013, https://doi.org/10.1165/rcmb.2016-0061oc
  22. Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine vol.47, pp.7, 2013, https://doi.org/10.1039/c7dt04116k
  23. Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells vol.13, pp.1, 2018, https://doi.org/10.1371/journal.pone.0191207
  24. Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as ‘gasotransmitters’ in bacteria? vol.46, pp.5, 2013, https://doi.org/10.1042/bst20170311
  25. Different effects of partial pressure in a high-pressure gaseous mixture of carbon monoxide and oxygen for rat heart preservation vol.9, pp.None, 2013, https://doi.org/10.1038/s41598-019-43905-0
  26. Neurointegrity and europhysiology: astrocyte, glutamate, and carbon monoxide interactions vol.9, pp.1, 2019, https://doi.org/10.4103/2045-9912.254639
  27. Impact of Pharmacological Inhibition of Hydrogen Sulphide Production in the SOD1G93A-ALS Mouse Model vol.20, pp.10, 2013, https://doi.org/10.3390/ijms20102550
  28. Protective effects of carbon monoxide releasing molecule-2 on pancreatic function in septic mice vol.19, pp.5, 2013, https://doi.org/10.3892/mmr.2019.10049
  29. Response of the cerebral vasculature to systemic carbon monoxide administration—Regional differences and sexual dimorphism vol.52, pp.1, 2020, https://doi.org/10.1111/ejn.14725
  30. Carbon monoxide (CO) and nitric dioxide (NO2) exposure during fetal life: impact on neonatal and placental weight, a prospective study vol.33, pp.13, 2013, https://doi.org/10.1080/14767058.2018.1542425
  31. CORM-2-entrapped ultradeformable liposomes ameliorate acute skin inflammation in an ear edema model via effective CO delivery vol.10, pp.12, 2020, https://doi.org/10.1016/j.apsb.2020.05.010
  32. Ischemia-Reperfusion Injury in Lung Transplantation vol.10, pp.6, 2013, https://doi.org/10.3390/cells10061333
  33. Carbon Monoxide and Nitric Oxide as Examples of the Youngest Class of Transmitters vol.22, pp.11, 2013, https://doi.org/10.3390/ijms22116029
  34. ‘Carbon-Monoxide-Releasing Molecule-2 (CORM-2)’ Is a Misnomer: Ruthenium Toxicity, Not CO Release, Accounts for Its Antimicrobial Effects vol.10, pp.6, 2013, https://doi.org/10.3390/antiox10060915
  35. Comparative efficiency of three gasotransmitters (nitric oxide, hydrogen sulfide and carbon monoxide): Analysis on the model of red blood cell microrheological responses vol.7, pp.1, 2013, https://doi.org/10.3233/jcb-200023
  36. Amperometric Sensing of Carbon Monoxide: Improved Sensitivity and Selectivity via Nanostructure-Controlled Electrodeposition of Gold vol.11, pp.9, 2013, https://doi.org/10.3390/bios11090334
  37. Azaadamantanes, a New Promising Scaffold for Medical Chemistry vol.47, pp.6, 2013, https://doi.org/10.1134/s1068162021060236
  38. Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite vol.60, pp.21, 2013, https://doi.org/10.1021/acs.inorgchem.1c01048