References
- Gentile MA. Inhaled medical gases: more to breathe than oxygen. Respir Care 2011;56:1341-1357. https://doi.org/10.4187/respcare.01442
-
Kashiba M, Kajimura M, Goda N, Suematsu M. From
$O_{2}$ to$H_{2}S$ : a landscape view of gas biology. Keio J Med 2002;51:1-10. https://doi.org/10.2302/kjm.51.1 - Nakao A, Sugimoto R, Billiar TR, McCurry KR. Therapeutic antioxidant medical gas. J Clin Biochem Nutr 2009;44:1-13. https://doi.org/10.3164/jcbn.08-193R
- Bloch KD, Ichinose F, Roberts JD Jr, Zapol WM. Inhaled NO as a therapeutic agent. Cardiovasc Res 2007;75:339-348. https://doi.org/10.1016/j.cardiores.2007.04.014
- Ryter SW, Choi AM. Gaseous therapeutics in acute lung injury. Compr Physiol 2011;1:105-121.
- Ryter SW, Choi AM. Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am J Respir Cell Mol Biol 2009;41:251-260. https://doi.org/10.1165/rcmb.2009-0170TR
- Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 2006;86:583-650. https://doi.org/10.1152/physrev.00011.2005
- Ryter SW, Morse D, Choi AM. Carbon monoxide: to boldly go where NO has gone before. Sci STKE 2004;2004:RE6.
- Wu L, Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 2005;57:585-630. https://doi.org/10.1124/pr.57.4.3
- Ryter SW, Otterbein LE. Carbon monoxide in biology and medicine. Bioessays 2004;26:270-280. https://doi.org/10.1002/bies.20005
- Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 2010;9:728-743. https://doi.org/10.1038/nrd3228
- Kashfi K, Olson KR. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol 2013;85:689-703. https://doi.org/10.1016/j.bcp.2012.10.019
- Wagner F, Asfar P, Calzia E, Radermacher P, Szabo C. Bench-to-bedside review: hydrogen sulfide: the third gaseous transmitter: applications for critical care. Crit Care 2009;13:213. https://doi.org/10.1186/cc7700
- Liu YH, Yan CD, Bian JS. Hydrogen sulf ide: a novel signaling molecule in the vascular system. J Cardiovasc Pharmacol 2011;58:560-569. https://doi.org/10.1097/FJC.0b013e31820eb7a1
-
Wang R. Two's company, three's a crowd: can
$H_2S$ be the third endogenous gaseous transmitter? FASEB J 2002;16:1792-1798. https://doi.org/10.1096/fj.02-0211hyp - Moody BF, Calvert JW. Emergent role of gasotransmitters in ischemia-reperfusion injury. Med Gas Res 2011;1:3. https://doi.org/10.1186/2045-9912-1-3
- Wink DA, Mitchell JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 1998;25:434-456. https://doi.org/10.1016/S0891-5849(98)00092-6
- Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A 1968;61:748-755. https://doi.org/10.1073/pnas.61.2.748
- Tenhunen R, Marver HS, Schmid R. Microsomal heme oxygenase: characterization of the enzyme. J Biol Chem 1969;244:6388-6394.
- Keyse SM, Tyrrell RM. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci U S A 1989;86:99-103. https://doi.org/10.1073/pnas.86.1.99
- Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 1997;37:517-554. https://doi.org/10.1146/annurev.pharmtox.37.1.517
- Maines MD, Trakshel GM, Kutty RK. Characterization of two constitutive forms of rat liver microsomal heme oxygenase: only one molecular species of the enzyme is inducible. J Biol Chem 1986;261:411-419.
- Vandiver M, Snyder SH. Hydrogen sulf ide: a gasotransmitter of clinical relevance. J Mol Med (Berl) 2012;90:255-263. https://doi.org/10.1007/s00109-012-0873-4
- Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 1987;84:9265-9269. https://doi.org/10.1073/pnas.84.24.9265
- Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 1987;61:866-879. https://doi.org/10.1161/01.RES.61.6.866
- Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109-142.
- Ignarro LJ. Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci Rep 1999;19:51-71. https://doi.org/10.1023/A:1020150124721
- Snyder SH, Bredt DS. Biological roles of nitric oxide. Sci Am 1992;266:68-77.
- Derbyshire ER, Marletta MA. Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem 2012;81:533-559. https://doi.org/10.1146/annurev-biochem-050410-100030
- Ichinose F, Roberts JD Jr, Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation 2004;109:3106-3111. https://doi.org/10.1161/01.CIR.0000134595.80170.62
- Frostell C, Fratacci MD, Wain JC, Jones R, Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 1991;83:2038-2047. https://doi.org/10.1161/01.CIR.83.6.2038
- Rossaint R, Falke KJ, Lopez F, Slama K, Pison U, Zapol WM. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 1993;328:399-405. https://doi.org/10.1056/NEJM199302113280605
- Porta NF, Steinhorn RH. Pulmonary vasodilator therapy in the NICU: inhaled nitric oxide, sildenafil, and other pulmonary vasodilating agents. Clin Perinatol 2012;39:149-164. https://doi.org/10.1016/j.clp.2011.12.006
- Hartsf ield CL. Cross talk between carbon monoxide and nitric oxide. Antioxid Redox Signal 2002;4:301-307. https://doi.org/10.1089/152308602753666352
- Piantadosi CA. Biological chemistry of carbon monoxide. Antioxid Redox Signal 2002;4:259-270. https://doi.org/10.1089/152308602753666316
- Sjostrand T. The formation of carbon monoxide by the decomposition of haemoglobin in vivo. Acta Physiol Scand 1952;26:338-344. https://doi.org/10.1111/j.1748-1716.1952.tb00915.x
- Sjostrand T. Endogenous production of carbon monoxide in man under normal and pathophysiological conditions. Scand J Clin Lab Invest 1949;1:201-214. https://doi.org/10.3109/00365514909069943
- Coburn RF, Blakemore WS, Forster RE. Endogenous carbon monoxide production in man. J Clin Invest 1963;42:1172-1178. https://doi.org/10.1172/JCI104802
- Tenhunen R, Marver HS, Schmid R. The enzymatic catabolism of hemoglobin: stimulation of microsomal heme oxygenase by hemin. J Lab Clin Med 1970;75:410-421.
- Kageyama H, Hiwasa T, Tokunaga K, Sakiyama S. Isolation and characterization of a complementary DNA clone for a Mr 32,000 protein which is induced with tumor promoters in BALB/c 3T3 cells. Cancer Res 1988;48:4795-4798.
- Keyse SM, Tyrrell RM. Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts. J Biol Chem 1987;262:14821-14825.
- Applegate LA, Luscher P, Tyrrell RM. Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res 1991;51:974-978.
- Otterbein LE, Bach FH, Alam J, et al. Carbon monoxide has anti-inf lammatory effects involving the mitogenactivated protein kinase pathway. Nat Med 2000;6:422-428. https://doi.org/10.1038/74680
- Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH. Carbon monoxide: a putative neural messenger. Science 1993;259:381-384. https://doi.org/10.1126/science.7678352
- Brouard S, Otterbein LE, Anrather J, et al. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med 2000;192:1015-1026. https://doi.org/10.1084/jem.192.7.1015
- Kim HP, Ryter SW, Choi AM. CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 2006;46:411-449. https://doi.org/10.1146/annurev.pharmtox.46.120604.141053
- Durante W, Johnson FK, Johnson RA. Role of carbon monoxide in cardiovascular function. J Cell Mol Med 2006;10:672-686. https://doi.org/10.1111/j.1582-4934.2006.tb00427.x
- Suematsu M, Kashiwagi S, Sano T, Goda N, Shinoda Y, Ishimura Y. Carbon monoxide as an endogenous modulator of hepatic vascular perfusion. Biochem Biophys Res Commun 1994;205:1333-1337. https://doi.org/10.1006/bbrc.1994.2811
- Morita T, Mitsialis SA, Koike H, Liu Y, Kourembanas S. Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J Biol Chem 1997;272:32804-32809. https://doi.org/10.1074/jbc.272.52.32804
- Suliman HB, Carraway MS, Tatro LG, Piantadosi CA. A new activating role for CO in cardiac mitochondrial biogenesis. J Cell Sci 2007;120(Pt 2):299-308. https://doi.org/10.1242/jcs.03318
- Lee SJ, Ryter SW, Xu JF, et al. Carbon monoxide activates autophagy via mitochondrial reactive oxygen species formation. Am J Respir Cell Mol Biol 2011;45:867-873. https://doi.org/10.1165/rcmb.2010-0352OC
- Otterbein LE, Mantell LL, Choi AM. Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol 1999;276(4 Pt 1):L688-L694.
- Otterbein LE, Otterbein SL, Ifedigbo E, et al. MKK3 mitogen-activated protein kinase pathway mediates carbon monoxide-induced protection against oxidantinduced lung injury. Am J Pathol 2003;163:2555-2563. https://doi.org/10.1016/S0002-9440(10)63610-3
- Dolinay T, Szilasi M, Liu M, Choi AM. Inhaled carbon monoxide confers antiinf lammatory effects against ventilator-induced lung injury. Am J Respir Crit Care Med 2004;170:613-620. https://doi.org/10.1164/rccm.200401-023OC
- Zhang X, Shan P, Alam J, Davis RJ, Flavell RA, Lee PJ. Carbon monoxide modulates Fas/Fas ligand, caspases, and Bcl-2 family proteins via the p38alpha mitogenactivated protein kinase pathway during ischemiareperfusion lung injury. J Biol Chem 2003;278:22061-22070. https://doi.org/10.1074/jbc.M301858200
- Zhang X, Shan P, Otterbein LE, et al. Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3. J Biol Chem 2003;278:1248-1258. https://doi.org/10.1074/jbc.M208419200
- MacGarvey NC, Suliman HB, Bartz RR, et al. Activation of mitochondrial biogenesis by heme oxygenase-1-mediated NF-E2-related factor-2 induction rescues mice from lethal Staphylococcus aureus sepsis. Am J Respir Crit Care Med 2012;185:851-861. https://doi.org/10.1164/rccm.201106-1152OC
- Otterbein LE, Zuckerbraun BS, Haga M, et al. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 2003;9:183-190. https://doi.org/10.1038/nm817
- Sato K, Balla J, Otterbein L, et al. Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol 2001;166:4185-4194. https://doi.org/10.4049/jimmunol.166.6.4185
- Song R, Kubo M, Morse D, et al. Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via anti-inf lammatory and anti-apoptotic effects. Am J Pathol 2003;163:231-242. https://doi.org/10.1016/S0002-9440(10)63646-2
- Ryter SW, Choi AM. Heme oxygenase-1/carbon monoxide: novel therapeutic strategies in critical care medicine. Curr Drug Targets 2010;11:1485-1494. https://doi.org/10.2174/1389450111009011485
- Whiteman M, Le Trionnaire S, Chopra M, Fox B, Whatmore J. Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin Sci (Lond) 2011;121:459-488. https://doi.org/10.1042/CS20110267
- Yang G, Wu L, Jiang B, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 2008;322:587-590. https://doi.org/10.1126/science.1162667
- Kimura H. Hydrogen sulfide as a neuromodulator. Mol Neurobiol 2002;26:13-19. https://doi.org/10.1385/MN:26:1:013
- Szabo C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 2007;6:917-935. https://doi.org/10.1038/nrd2425
- Lowicka E, Beltowski J. Hydrogen sulf ide (H2S): the third gas of interest for pharmacologists. Pharmacol Rep 2007;59:4-24.
- Faller S, Spassov SG, Zimmermann KK, et al. Hydrogen sulfide prevents hyperoxia-induced lung injury by downregulating reactive oxygen species formation and angiopoietin-2 release. Curr Pharm Des. 2012 Oct 18 [Epub].
- Faller S, Ryter SW, Choi AM, Loop T, Schmidt R, Hoetzel A. Inhaled hydrogen sulfide protects against ventilator-induced lung injury. Anesthesiology 2010;113:104-115. https://doi.org/10.1097/ALN.0b013e3181de7107
- Spiller F, Orrico MI, Nascimento DC, et al. Hydrogen sulfide improves neutrophil migration and survival in sepsis via K+ATP channel activation. Am J Respir Crit Care Med 2010;182:360-368. https://doi.org/10.1164/rccm.200907-1145OC
- Von Burg R. Ca rbon monox ide. J Appl Tox icol 1999;19:379-386. https://doi.org/10.1002/(SICI)1099-1263(199909/10)19:5<379::AID-JAT563>3.0.CO;2-8
- Penney D, Benignus V, Kephalopoulos S, Kotzias D, Kleinman M, Verrier A. Carbon monoxide. In: World Health Organization, ed. WHO Guidelines for Indoor Air Quality: Selected Pollutants. Copenhagen: WHO, 2010:55.
- Raub J. Environmental Health Criteria 213. Carbon Monoxide Second Edition. Geneva: WHO, 1999, 70.
- Smith RP. Toxic responses of the blood. In: Casarett LJ, Doull J, Klaassen CD, Amdur MO, eds. Casarett and Doull's Toxicology: the Basic Science of Poisons. 3rd ed. New York: Macmillan, 1986:223-224.
- Gorman D, Drewry A, Huang YL, Sames C. The clinical toxicology of carbon monoxide. Toxicology 2003;187:25-38. https://doi.org/10.1016/S0300-483X(03)00005-2
- Piantadosi CA. Diagnosis and treatment of carbon monoxide poisoning. Respir Care Clin N Am 1999;5:183-202.
- Rudra CB, Williams MA, Sheppard L, et al. Relation of whole blood carboxyhemoglobin concentration to ambient carbon monoxide exposure estimated using regression. Am J Epidemiol 2010;171:942-951. https://doi.org/10.1093/aje/kwq022
- Russell MA. Blood carboxyhaemoglobin changes during tobacco smoking. Postgrad Med J 1973;49:684-687. https://doi.org/10.1136/pgmj.49.576.684
- Samoli E, Touloumi G, Schwartz J, et al. Short-term effects of carbon monoxide on mortality: an analysis within the APHEA project. Environ Health Perspect 2007;115:1578-1583. https://doi.org/10.1289/ehp.10375
- Reboul C, Thireau J, Meyer G, et al. Carbon monoxide exposure in the urban environment: an insidious foe for the heart? Respir Physiol Neurobiol 2012;184:204-212. https://doi.org/10.1016/j.resp.2012.06.010
- Kutty RK, Daniel RF, Ryan DE, Levin W, Maines MD. Rat liver cytochrome P-450b, P-420b, and P-420c are degraded to biliverdin by heme oxygenase. Arch Biochem Biophys 1988;260:638-644. https://doi.org/10.1016/0003-9861(88)90492-4
- Tenhunen R, Ross ME, Marver HS, Schmid R. Reduced nicotinamide-adenine dinucleotide phosphate dependent biliverdin reductase: partial purification and characterization. Biochemistry 1970;9:298-303. https://doi.org/10.1021/bi00804a016
- Vreman HJ, Wong RJ, Stevenson DK. Carbon monoxide in breath, blood, and other tissues. In: Penney DG, ed. Carbon Monoxide Toxicity. Boca Raton: CRC Press, 2000:19-60.
- Cruse I, Maines MD. Evidence suggesting that the two forms of heme oxygenase are products of different genes. J Biol Chem 1988;263:3348-3353.
- Lee PJ, Jiang BH, Chin BY, et al. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 1997;272:5375-5381. https://doi.org/10.1074/jbc.272.9.5375
- Lee PJ, Alam J, Sylvester SL, Inamdar N, Otterbein L, Choi AM. Regulation of heme oxygenase-1 expression in vivo and in vitro in hyperoxic lung injury. Am J Respir Cell Mol Biol 1996;14:556-568. https://doi.org/10.1165/ajrcmb.14.6.8652184
- Shibahara S, Muller RM, Taguchi H. Transcriptional control of rat heme oxygenase by heat shock. J Biol Chem 1987;262:12889-12892.
- Alam J, Shibahara S, Smith A. Transcriptional activation of the heme oxygenase gene by heme and cadmium in mouse hepatoma cells. J Biol Chem 1989;264:6371-6375.
- Keyse SM, Applegate LA, Tromvoukis Y, Tyrrell RM. Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts. Mol Cell Biol 1990;10:4967-4969. https://doi.org/10.1128/MCB.10.9.4967
- Alam J, Cai J, Smith A. Isolation and characterization of the mouse heme oxygenase-1 gene: distal 5' sequences are required for induction by heme or heavy metals. J Biol Chem 1994;269:1001-1009.
- Alam J, Camhi S, Choi AM. Identification of a second region upstream of the mouse heme oxygenase-1 gene that functions as a basal level and inducer-dependent transcription enhancer. J Biol Chem 1995;270:11977-11984. https://doi.org/10.1074/jbc.270.20.11977
- Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL. Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 1999;274:26071-26078. https://doi.org/10.1074/jbc.274.37.26071
- Alam J, Wicks C, Stewart D, et al. Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells: role of p38 kinase and Nrf2 transcription factor. J Biol Chem 2000;275:27694-27702.
- Itoh K, Wakabayashi N, Katoh Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 1999;13:76-86. https://doi.org/10.1101/gad.13.1.76
- Kobayashi A, Kang MI, Okawa H, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 2004;24:7130-7139. https://doi.org/10.1128/MCB.24.16.7130-7139.2004
- Ogawa K, Sun J, Taketani S, et al. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J 2001;20:2835-2843. https://doi.org/10.1093/emboj/20.11.2835
- Sun J, Hoshino H, Takaku K, et al. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J 2002;21:5216-5224. https://doi.org/10.1093/emboj/cdf516
- Alam J, Igarashi K, Immenschuh S, Shibahara S, Tyrrell RM. Regulation of heme oxygenase-1 gene transcription: recent advances and highlights from the International Conference (Uppsala, 2003) on Heme Oxygenase. Antioxid Redox Signal 2004;6:924-933. https://doi.org/10.1089/ars.2004.6.924
- Alam J, Cook JL. How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am J Respir Cell Mol Biol 2007;36:166-174. https://doi.org/10.1165/rcmb.2006-0340TR
- Stone JR, Marletta MA. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry 1994;33:5636-5640. https://doi.org/10.1021/bi00184a036
- Furchgott RF, Jothianandan D. Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 1991;28:52-61.
- Suematsu M, Goda N, Sano T, et al. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. J Clin Invest 1995;96:2431-2437. https://doi.org/10.1172/JCI118300
- Wang R. Resurgence of carbon monoxide: an endogenous gaseous vasorelaxing factor. Can J Physiol Pharmacol 1998;76:1-15. https://doi.org/10.1139/y97-187
- Nakahira K, Kim HP, Geng XH, et al. Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med 2006;203:2377-2389. https://doi.org/10.1084/jem.20060845
- Kim HP, Wang X, Zhang J, et al. Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38 beta MAPK and heat shock factor-1. J Immunol 2005;175:2622-2629. https://doi.org/10.4049/jimmunol.175.4.2622
- Bilban M, Bach FH, Otterbein SL, et al. Carbon monoxide orchestrates a protective response through PPARgamma. Immunity 2006;24:601-610. https://doi.org/10.1016/j.immuni.2006.03.012
- Brouard S, Berberat PO, Tobiasch E, Seldon MP, Bach FH, Soares MP. Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-kappa B to protect endothelial cells from tumor necrosis factor-alpha-mediated apoptosis. J Biol Chem 2002;277:17950-17961. https://doi.org/10.1074/jbc.M108317200
- Zhang X, Shan P, Alam J, Fu XY, Lee PJ. Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. J Biol Chem 2005;280:8714-8721. https://doi.org/10.1074/jbc.M408092200
- Wang X, Wang Y, Kim HP, Nakahira K, Ryter SW, Choi AM. Carbon monoxide protects against hyperoxia-induced endothelial cell apoptosis by inhibiting reactive oxygen species formation. J Biol Chem 2007;282:1718-1726. https://doi.org/10.1074/jbc.M607610200
- Wang X, Wang Y, Lee SJ, Kim HP, Choi AM, Ryter SW. Carbon monoxide inhibits Fas activating antibodyinduced apoptosis in endothelial cells. Med Gas Res 2011;1:8. https://doi.org/10.1186/2045-9912-1-8
- Morita T, Perrella MA, Lee ME, Kourembanas S. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci U S A 1995;92:1475-1479. https://doi.org/10.1073/pnas.92.5.1475
- Morita T, Kourembanas S. Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide. J Clin Invest 1995;96:2676-2682. https://doi.org/10.1172/JCI118334
- Kim HP, Wang X, Nakao A, et al. Caveolin-1 expression by means of p38beta mitogen-activated protein kinase mediates the antiproliferative effect of carbon monoxide. Proc Natl Acad Sci U S A 2005;102:11319-11324. https://doi.org/10.1073/pnas.0501345102
- Taille C, El-Benna J, Lanone S, Boczkowski J, Motterlini R. Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. J Biol Chem 2005;280:25350-25360. https://doi.org/10.1074/jbc.M503512200
- Rodriguez AI, Gangopadhyay A, Kelley EE, Pagano PJ, Zuckerbraun BS, Bauer PM. HO-1 and CO decrease platelet-derived growth factor-induced vascular smooth muscle cell migration via inhibition of Nox1. Arterioscler Thromb Vasc Biol 2010;30:98-104. https://doi.org/10.1161/ATVBAHA.109.197822
- Morse D, Pischke SE, Zhou Z, et al. Suppression of inf lammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J Biol Chem 2003;278:36993-36998. https://doi.org/10.1074/jbc.M302942200
- Mazzola S, Forni M, Albertini M, et al. Carbon monoxide pretreatment prevents respiratory derangement and ameliorates hyperacute endotoxic shock in pigs. FASEB J 2005;19:2045-2047. https://doi.org/10.1096/fj.05-3782fje
- Mitchell LA, Channell MM, Royer CM, Ryter SW, Choi AM, McDonald JD. Evaluation of inhaled carbon monoxide as an anti-inflammatory therapy in a nonhuman primate model of lung inf lammation. Am J Physiol Lung Cell Mol Physiol 2010;299:L891-L897. https://doi.org/10.1152/ajplung.00366.2009
- Ghosh S, Wilson MR, Choudhury S, et al. Effects of inhaled carbon monoxide on acute lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2005;288:L1003-L1009. https://doi.org/10.1152/ajplung.00451.2004
- Clayton CE, Carraway MS, Suliman HB, et al. Inhaled carbon monoxide and hyperoxic lung injury in rats. Am J Physiol Lung Cell Mol Physiol 2001;281:L949-L957. https://doi.org/10.1152/ajplung.2001.281.4.L949
- Fernandez-Gonzalez A, Alex Mitsialis S, Liu X, Kourembanas S. Vasculoprotective effects of heme oxygenase-1 in a murine model of hyperoxia-induced bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2012;302:L775-L784. https://doi.org/10.1152/ajplung.00196.2011
- Hoetzel A, Schmidt R, Vallbracht S, et al. Carbon monoxide prevents ventilator-induced lung injury via caveolin-1. Crit Care Med 2009;37:1708-1715. https://doi.org/10.1097/CCM.0b013e31819efa31
- Hoetzel A, Dolinay T, Vallbracht S, et al. Carbon monoxide protects against ventilator-induced lung injury via PPAR-gamma and inhibition of Egr-1. Am J Respir Crit Care Med 2008;177:1223-1232. https://doi.org/10.1164/rccm.200708-1265OC
- Faller S, Foeckler M, Strosing KM, et al. Kinetic effects of carbon monoxide inhalation on tissue protection in ventilator-induced lung injury. Lab Invest 2012;92:999-1012. https://doi.org/10.1038/labinvest.2012.55
- Fujita T, Toda K, Karimova A, et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med 2001;7:598-604. https://doi.org/10.1038/87929
- Mishra S, Fujita T, Lama VN, et al. Carbon monoxide rescues ischemic lungs by interrupting MAPKdriven expression of early growth response 1 gene and its downstream target genes. Proc Natl Acad Sci U S A 2006;103:5191-5196. https://doi.org/10.1073/pnas.0600241103
- Schallner N, Fuchs M, Schwer CI, et al. Postconditioning with inhaled carbon monoxide counteracts apoptosis and neuroinflammation in the ischemic rat retina. PLoS One 2012;7:e46479. https://doi.org/10.1371/journal.pone.0046479
- Nakao A, Kimizuka K, Stolz DB, et al. Protective effect of carbon monoxide inhalation for cold-preserved small intestinal grafts. Surgery 2003;134:285-292. https://doi.org/10.1067/msy.2003.238
- Faleo G, Neto JS, Kohmoto J, et al. Carbon monoxide ameliorates renal cold ischemia-reperfusion injury with an upregulation of vascular endothelial growth factor by activation of hypoxia-inducible factor. Transplantation 2008;85:1833-1840. https://doi.org/10.1097/TP.0b013e31817c6f63
- Kaizu T, Nakao A, Tsung A, et al. Carbon monoxide inhalation ameliorates cold ischemia/reperfusion injury after rat liver transplantation. Surgery 2005;138:229-235. https://doi.org/10.1016/j.surg.2005.06.015
- Kohmoto J, Nakao A, Kaizu T, et al. Low-dose carbon monoxide inhalation prevents ischemia/reperfusion injury of transplanted rat lung grafts. Surgery 2006;140:179-185. https://doi.org/10.1016/j.surg.2006.03.004
- Kohmoto J, Nakao A, Sugimoto R, et al. Carbon monoxide-saturated preservation solution protects lung grafts from ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2008;136:1067-1075. https://doi.org/10.1016/j.jtcvs.2008.06.026
- Nakao A, Toyokawa H, Tsung A, et al. Ex vivo application of carbon monoxide in University of Wisconsin solution to prevent intestinal cold ischemia/reperfusion injury. Am J Transplant 2006;6:2243-2255. https://doi.org/10.1111/j.1600-6143.2006.01465.x
- Pannen BH, Kohler N, Hole B, Bauer M, Clemens MG, Geiger KK. Protective role of endogenous carbon monoxide in hepatic microcirculatory dysfunction after hemorrhagic shock in rats. J Clin Invest 1998;102:1220-1228. https://doi.org/10.1172/JCI3428
- Amersi F, Shen XD, Anselmo D, et al. Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology 2002;35:815-823. https://doi.org/10.1053/jhep.2002.32467
- Christou H, Morita T, Hsieh CM, et al. Prevention of hypoxia-induced pulmonary hypertension by enhancement of endogenous heme oxygenase-1 in the rat. Circ Res 2000;86:1224-1229. https://doi.org/10.1161/01.RES.86.12.1224
- Minamino T, Christou H, Hsieh CM, et al. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci U S A 2001;98:8798-8803. https://doi.org/10.1073/pnas.161272598
- Yet SF, Perrella MA, Layne MD, et al. Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J Clin Invest 1999;103:R23-R29. https://doi.org/10.1172/JCI6163
- Zuckerbraun BS, Chin BY, Wegiel B, et al. Carbon monoxide reverses established pulmonary hypertension. J Exp Med 2006;203:2109-2119. https://doi.org/10.1084/jem.20052267
- Dubuis E, Potier M, Wang R, Vandier C. Continuous inhalation of carbon monoxide attenuates hypoxic pulmonary hypertension development presumably through activation of BKCa channels. Cardiovasc Res 2005;65:751-761. https://doi.org/10.1016/j.cardiores.2004.11.007
- Selman M, King TE, Pardo A; American Thoracic Society; European Respiratory Society; American College of Chest Physicians. Idiopathic pulmonary f ibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001;134:136-151. https://doi.org/10.7326/0003-4819-134-2-200101160-00015
- Zhou Z, Song R, Fattman CL, et al. Carbon monoxide suppresses bleomycin-induced lung f ibrosis. Am J Pathol 2005;166:27-37. https://doi.org/10.1016/S0002-9440(10)62229-8
- Choi KM, Gibbons SJ, Nguyen TV, et al. Heme oxygenase-1 protects interstitial cells of Cajal from oxidative stress and reverses diabetic gastroparesis. Gastroenterology 2008;135:2055-2064. https://doi.org/10.1053/j.gastro.2008.09.003
- Kashyap PC, Choi KM, Dutta N, et al. Carbon monoxide reverses diabetic gastroparesis in NOD mice. Am J Physiol Gastrointest Liver Physiol 2010;298:G1013-G1019. https://doi.org/10.1152/ajpgi.00069.2010
- Rodella L, Lamon BD, Rezzani R, et al. Carbon monoxide and biliverdin prevent endothelial cell sloughing in rats with type I diabetes. Free Radic Biol Med 2006;40:2198-2205. https://doi.org/10.1016/j.freeradbiomed.2006.02.018
- Simon T, Pogu S, Tardif V, et al. Carbon monoxidetreated dendritic cells decrease beta1-integrin induction on CD8(+) T cells and protect from type 1 diabetes. Eur J Immunol 2013;43:209-218. https://doi.org/10.1002/eji.201242684
- Gunther L, Berberat PO, Haga M, et al. Carbon monoxide protects pancreatic beta-cells from apoptosis and improves islet function/survival after transplantation. Diabetes 2002;51:994-999. https://doi.org/10.2337/diabetes.51.4.994
- Wang H, Lee SS, Gao W, et al. Donor treatment with carbon monoxide can yield islet allograft survival and tolerance. Diabetes 2005;54:1400-1406. https://doi.org/10.2337/diabetes.54.5.1400
- Joe Y, Zheng M, Kim SK, et al. The role of carbon monoxide in metabolic disease. Ann N Y Acad Sci 2011;1229:156-161. https://doi.org/10.1111/j.1749-6632.2011.06121.x
- Lancel S, Montaigne D, Marechal X, et al. Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome. PLoS One 2012;7:e41836. https://doi.org/10.1371/journal.pone.0041836
- Bainbridge SA, Sidle EH, Smith GN. Direct placental effects of cigarette smoke protect women from preeclampsia: the specific roles of carbon monoxide and antioxidant systems in the placenta. Med Hypotheses 2005;64:17-27. https://doi.org/10.1016/j.mehy.2004.06.019
- Ahmed A, Rahman M, Zhang X, et al. Induction of placental heme oxygenase-1 is protective against TNFalpha-induced cytotoxicity and promotes vessel relaxation. Mol Med 2000;6:391-409.
- Yusuf K, Kamaluddeen M, Wilson RD, Akierman A. Carboxyhemoglobin levels in umbilical cord blood of women with pre-eclampsia and intrauterine growth restriction. J Perinat Med 2012 Jun 24 [Epub]. http://dx.doi.org/10.1515/jpm-2011-0312.
- Bainbridge SA, Belkacemi L, Dickinson M, Graham CH, Smith GN. Carbon monoxide inhibits hypoxia/reoxygenation-induced apoptosis and secondary necrosis in syncytiotrophoblast. Am J Pathol 2006;169:774-783. https://doi.org/10.2353/ajpath.2006.060184
- Zhai D, Guo Y, Smith G, Krewski D, Walker M, Wen SW. Maternal exposure to moderate ambient carbon monoxide is associated with decreased risk of preeclampsia. Am J Obstet Gynecol 2012;207:57. https://doi.org/10.1016/j.ajog.2012.06.075
- Motterlini R, Mann BE, Foresti R. Therapeutic applications of carbon monoxide-releasing molecules. Expert Opin Investig Drugs 2005;14:1305-1318. https://doi.org/10.1517/13543784.14.11.1305
- Foresti R, Bani-Hani MG, Motterlini R. Use of carbon monoxide as a therapeutic agent: promises and challenges. Intensive Care Med 2008;34:649-658. https://doi.org/10.1007/s00134-008-1011-1
- Motterlini R, Sawle P, Hammad J, et al. CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J 2005;19:284-286. https://doi.org/10.1096/fj.04-2169fje
- Kretschmer R, Gessner G, Gorls H, Heinemann SH, Westerhausen M. Dicarbonyl-bis(cysteamine)iron(II): a light induced carbon monoxide releasing molecule based on iron (CORM-S1). J Inorg Biochem 2011;105:6-9. https://doi.org/10.1016/j.jinorgbio.2010.10.006
- Hasegawa U, van der Vlies AJ, Simeoni E, Wandrey C, Hubbell JA. Carbon monoxide-releasing micelles for immunotherapy. J Am Chem Soc 2010;132:18273-18280. https://doi.org/10.1021/ja1075025
- Motterlini R, Sawle P, Hammad J, et al. Vasorelaxing effects and inhibition of nitric oxide in macrophages by new iron-containing carbon monoxide-releasing molecules (CO-RMs). Pharmacol Res 2013;68:108-117. https://doi.org/10.1016/j.phrs.2012.12.001
- Foresti R, Hammad J, Clark JE, et al. Vasoactive properties of CORM-3, a novel water-soluble carbon monoxidereleasing molecule. Br J Pharmacol 2004;142:453-460. https://doi.org/10.1038/sj.bjp.0705825
- Sawle P, Foresti R, Mann BE, Johnson TR, Green CJ, Motterlini R. Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. Br J Pharmacol 2005;145:800-810. https://doi.org/10.1038/sj.bjp.0706241
- Sun B, Zou X, Chen Y, Zhang P, Shi G. Preconditioning of carbon monoxide releasing molecule-derived CO attenuates LPS-induced activation of HUVEC. Int J Biol Sci 2008;4:270-278.
- Sun B, Sun H, Liu C, Shen J, Chen Z, Chen X. Role of CO-releasing molecules liberated CO in attenuating leukocytes sequestration and inf lammatory responses in the lung of thermally injured mice. J Surg Res 2007;139:128-135. https://doi.org/10.1016/j.jss.2006.08.032
- Cepinskas G, Katada K, Bihari A, Potter RF. Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice. Am J Physiol Gastrointest Liver Physiol 2008;294:G184-G191. https://doi.org/10.1152/ajpgi.00348.2007
- Mizuguchi S, Stephen J, Bihari R, et al. CORM-3-derived CO modulates polymorphonuclear leukocyte migration across the vascular endothelium by reducing levels of cell surface-bound elastase. Am J Physiol Heart Circ Physiol 2009;297:H920-H929. https://doi.org/10.1152/ajpheart.00305.2009
- Lancel S, Hassoun SM, Favory R, Decoster B, Motterlini R, Neviere R. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther 2009;329:641-648. https://doi.org/10.1124/jpet.108.148049
- Musameh MD, Green CJ, Mann BE, Fuller BJ, Motterlini R. Improved myocardial function after cold storage with preservation solution supplemented with a carbon monoxide-releasing molecule (CORM-3). J Heart Lung Transplant 2007;26:1192-1198. https://doi.org/10.1016/j.healun.2007.08.005
- Mayr FB, Spiel A, Leitner J, et al. Effects of carbon monoxide inhalation during experimental endotoxemia in humans. Am J Respir Crit Care Med 2005;171:354-360. https://doi.org/10.1164/rccm.200404-446OC
- Bathoorn E, Slebos DJ, Postma DS, et al. Anti-inf lammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study. Eur Respir J 2007;30:1131-1137. https://doi.org/10.1183/09031936.00163206
Cited by
- Effect of Carbon Monoxide-Releasing Molecules II-liberated CO on Suppressing Inflammatory Response in Sepsis by Interfering with Nuclear Factor Kappa B Activation vol.8, pp.10, 2013, https://doi.org/10.1371/journal.pone.0075840
- Rapid CO release from a Mn(I) carbonyl complex derived from azopyridine upon exposure to visible light and its phototoxicity toward malignant cells vol.49, pp.96, 2013, https://doi.org/10.1039/c3cc46558f
- Photodelivery of CO by Designed PhotoCORMs: Correlation between Absorption in the Visible Region and Metal-CO Bond Labilization in Carbonyl Complexes vol.9, pp.6, 2014, https://doi.org/10.1002/cmdc.201402007
- Exogenous carbon monoxide suppresses Escherichia coli vitality and improves survival in an Escherichia coli-induced murine sepsis model vol.35, pp.12, 2013, https://doi.org/10.1038/aps.2014.99
- Carbon monoxide down-regulates α4β1 integrin-specific ligand binding and cell adhesion: a possible mechanism for cell mobilization vol.15, pp.None, 2013, https://doi.org/10.1186/s12865-014-0052-1
- Lower Obesity Rate during Residence at High Altitude among a Military Population with Frequent Migration: A Quasi Experimental Model for Investigating Spatial Causation vol.9, pp.4, 2013, https://doi.org/10.1371/journal.pone.0093493
- Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases vol.12, pp.None, 2013, https://doi.org/10.1186/s12979-015-0046-8
- Extracellular hemoglobin: the case of a friend turned foe vol.6, pp.None, 2013, https://doi.org/10.3389/fphys.2015.00096
- CO and CO-releasing molecules (CO-RMs) in acute gastrointestinal inflammation : CO in acute GI inflammation vol.172, pp.6, 2013, https://doi.org/10.1111/bph.12632
- Kidneys From α1,3-Galactosyltransferase Knockout/Human Heme Oxygenase-1/Human A20 Transgenic Pigs Are Protected From Rejection During Ex Vivo Perfusion With Human Blood vol.1, pp.6, 2013, https://doi.org/10.1097/txd.0000000000000533
- The Effects of Heme Oxygenase By-Products on the Proliferation and Invasion of HUVECs, HTR-8/SVneo Cells, 3A(tPA 30-1) Cells, and HESCs Under Varying Oxygen Concentrations vol.22, pp.12, 2015, https://doi.org/10.1177/1933719115589415
- Carbon Monoxide-Releasing Molecule-2 Reduces Intestinal Epithelial Tight-Junction Damage and Mortality in Septic Rats vol.10, pp.12, 2013, https://doi.org/10.1371/journal.pone.0145988
- Carbon monoxide in the treatment of sepsis vol.309, pp.12, 2013, https://doi.org/10.1152/ajplung.00311.2015
- The production of multi-transgenic pigs: update and perspectives for xenotransplantation vol.25, pp.3, 2016, https://doi.org/10.1007/s11248-016-9934-8
- The relationship between ambient carbon monoxide and heart rate variability—a systematic world review—2015 vol.23, pp.21, 2013, https://doi.org/10.1007/s11356-016-7533-0
- Carbon Monoxide Improves Efficacy of Mesenchymal Stromal Cells During Sepsis by Production of Specialized Proresolving Lipid Mediators* vol.44, pp.12, 2013, https://doi.org/10.1097/ccm.0000000000001999
- Effects of carbon monoxide-releasing molecules on pulmonary vasoreactivity in isolated perfused lungs vol.120, pp.2, 2013, https://doi.org/10.1152/japplphysiol.00726.2015
- Bactericidal Effect of a Photoresponsive Carbon Monoxide-Releasing Nonwoven against Staphylococcus aureus Biofilms vol.60, pp.7, 2016, https://doi.org/10.1128/aac.00703-16
- Light-triggered CO delivery by a water-soluble and biocompatible manganese photoCORM vol.45, pp.33, 2016, https://doi.org/10.1039/c6dt01358a
- Fluorescent Probe Based on Azobenzene-Cyclopalladium for the Selective Imaging of Endogenous Carbon Monoxide under Hypoxia Conditions vol.88, pp.22, 2013, https://doi.org/10.1021/acs.analchem.6b03376
- Mesenchymal Stromal Cells Deficient in Autophagy Proteins Are Susceptible to Oxidative Injury and Mitochondrial Dysfunction vol.56, pp.3, 2013, https://doi.org/10.1165/rcmb.2016-0061oc
- Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine vol.47, pp.7, 2013, https://doi.org/10.1039/c7dt04116k
- Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells vol.13, pp.1, 2018, https://doi.org/10.1371/journal.pone.0191207
- Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as ‘gasotransmitters’ in bacteria? vol.46, pp.5, 2013, https://doi.org/10.1042/bst20170311
- Different effects of partial pressure in a high-pressure gaseous mixture of carbon monoxide and oxygen for rat heart preservation vol.9, pp.None, 2013, https://doi.org/10.1038/s41598-019-43905-0
- Neurointegrity and europhysiology: astrocyte, glutamate, and carbon monoxide interactions vol.9, pp.1, 2019, https://doi.org/10.4103/2045-9912.254639
- Impact of Pharmacological Inhibition of Hydrogen Sulphide Production in the SOD1G93A-ALS Mouse Model vol.20, pp.10, 2013, https://doi.org/10.3390/ijms20102550
- Protective effects of carbon monoxide releasing molecule-2 on pancreatic function in septic mice vol.19, pp.5, 2013, https://doi.org/10.3892/mmr.2019.10049
- Response of the cerebral vasculature to systemic carbon monoxide administration—Regional differences and sexual dimorphism vol.52, pp.1, 2020, https://doi.org/10.1111/ejn.14725
- Carbon monoxide (CO) and nitric dioxide (NO2) exposure during fetal life: impact on neonatal and placental weight, a prospective study vol.33, pp.13, 2013, https://doi.org/10.1080/14767058.2018.1542425
- CORM-2-entrapped ultradeformable liposomes ameliorate acute skin inflammation in an ear edema model via effective CO delivery vol.10, pp.12, 2020, https://doi.org/10.1016/j.apsb.2020.05.010
- Ischemia-Reperfusion Injury in Lung Transplantation vol.10, pp.6, 2013, https://doi.org/10.3390/cells10061333
- Carbon Monoxide and Nitric Oxide as Examples of the Youngest Class of Transmitters vol.22, pp.11, 2013, https://doi.org/10.3390/ijms22116029
- ‘Carbon-Monoxide-Releasing Molecule-2 (CORM-2)’ Is a Misnomer: Ruthenium Toxicity, Not CO Release, Accounts for Its Antimicrobial Effects vol.10, pp.6, 2013, https://doi.org/10.3390/antiox10060915
- Comparative efficiency of three gasotransmitters (nitric oxide, hydrogen sulfide and carbon monoxide): Analysis on the model of red blood cell microrheological responses vol.7, pp.1, 2013, https://doi.org/10.3233/jcb-200023
- Amperometric Sensing of Carbon Monoxide: Improved Sensitivity and Selectivity via Nanostructure-Controlled Electrodeposition of Gold vol.11, pp.9, 2013, https://doi.org/10.3390/bios11090334
- Azaadamantanes, a New Promising Scaffold for Medical Chemistry vol.47, pp.6, 2013, https://doi.org/10.1134/s1068162021060236
- Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite vol.60, pp.21, 2013, https://doi.org/10.1021/acs.inorgchem.1c01048