DOI QR코드

DOI QR Code

Chiral Separation of Basic Compounds on Sulfated β-Cyclodextrin-Coated Zirconia Monolith by Capillary Electrochromatography

  • Received : 2013.01.28
  • Accepted : 2013.03.24
  • Published : 2013.06.20

Abstract

Sulfated ${\beta}$-cyclodextrin (SCD)-coated zirconia monolith was used as the chiral stationary phase in capillary electrochromatography for enantiomeric separation of basic chiral compounds. SCD adsorbed on the zirconia surface provided a stable chiral stationary phase in reversed-phase eluents. Retention, chiral selectivity and resolution of a set of six basic chiral compounds were measured in eluents of varying pH, composition of methanol and buffer. Optimum mobile phase condition for the separation of the compounds was found to be methanol content of 30%, buffer concentration of 30 mM and pH of 4.0.

Keywords

References

  1. K odzi ska, E.; Moravcova, D.; Jandera, P.; Buszewski, B. J. Chromatogr. A 2006, 1109, 51. https://doi.org/10.1016/j.chroma.2005.12.024
  2. Wu, R.; Hu, L.; Wang, F.; Ye, M.; Zou, H. J. Chromatogr. A 2008, 1184, 369. https://doi.org/10.1016/j.chroma.2007.09.022
  3. Svec, F.; Huber, C.G. Anal. Chem. 2006, 78, 2100. https://doi.org/10.1021/ac069383v
  4. Ericson, C.; Liao, J.-L.; Nakazato, K.; Hjerten, S. J. J. Chromatogr. A 1997, 767, 33. https://doi.org/10.1016/S0021-9673(97)00008-3
  5. Hayes, J. D.; Malik, A. Anal. Chem. 2000, 72, 4090. https://doi.org/10.1021/ac000120p
  6. Behnke, B.; Grom, E.; Bayer, E. J. Chromatogr. A 1995, 716, 207. https://doi.org/10.1016/0021-9673(95)00718-3
  7. Asiaie, R.; Huang, H.; Farnan, H.; Horvath, Cs. J. Chromatogr. A 1998, 806, 251. https://doi.org/10.1016/S0021-9673(98)00052-1
  8. Zhu, G.; Zhang, L. H.; Yuan, H.; Liang, Z.; Zhang, W.; Zhang, Y. J. Sep. Sci. 2007, 30, 792. https://doi.org/10.1002/jssc.200600496
  9. Gubitz, G.; Schmid, M. G. Electrophoresis 2004, 23, 3981.
  10. Fanali, S.; Catarcini, P.; Blaschke, G.; Chankvetadze, B. Electrophoresis 2001, 22, 3131. https://doi.org/10.1002/1522-2683(200109)22:15<3131::AID-ELPS3131>3.0.CO;2-S
  11. Lammerhofer, M. J. Chromatogr. A 2005, 1068, 31. https://doi.org/10.1016/j.chroma.2004.11.092
  12. Mangelings, D.; Vander Heyden, Y. Electrophoresis 2011, 32, 2583. https://doi.org/10.1002/elps.201100009
  13. Chankvetadze, B.; Blaschke, G. Electrophoresis 2000, 21, 4159. https://doi.org/10.1002/1522-2683(200012)21:18<4159::AID-ELPS4159>3.0.CO;2-G
  14. Nawrocki, J.; Rigney, M.; McCormick, A.; Carr, P. W. J. Chromatogr. A 1993, 657, 229. https://doi.org/10.1016/0021-9673(93)80284-F
  15. Dunlap, C. J.; McNeff, C. V.; Stoll, D.; Carr, P. W. Anal. Chem. 2001, 11, 599A.
  16. Nawrocki, J.; Dunlap, C. J.; McCormick, A.; Carr, P. W. J. Chromatogr. A 2004, 1028, 1. https://doi.org/10.1016/j.chroma.2003.11.052
  17. Nawrocki, J.; Dunlap, C. J.; Carr, P. W.; Blackwell, J. A. Biotechnol. Prog. 1994, 10, 561. https://doi.org/10.1021/bp00030a001
  18. Castells, C. B.; Carr, P. W. Anal. Chem. 1999, 71, 3013. https://doi.org/10.1021/ac990021f
  19. Castells, C. B.; Carr, P. W. J. Chromatogr. A 2000, 904, 17. https://doi.org/10.1016/S0021-9673(00)00883-9
  20. Park, S. Y.; Park, J. K.; Park, J. H.; McNeff, C. V.; Carr, P. W. Microchem. J. 2001, 70, 179. https://doi.org/10.1016/S0026-265X(01)00129-1
  21. Park, J. H.; Lee, J. W.; Kwon, S. H.; Cha, J. S.; Carr, P. W.; McNeff, C. V. J. Chromatogr. A 2004, 1050, 151. https://doi.org/10.1016/j.chroma.2004.08.027
  22. Kim, I. W.; Choi, H. M.; Yoon, H. J.; Park, J. H. Anal. Chim. Acta 2006, 569, 151. https://doi.org/10.1016/j.aca.2006.03.080
  23. Gwon, J.; Jin, J. H.; McNeff, C. V.; Park, J. H. Electrophoresis 2009, 30, 3846. https://doi.org/10.1002/elps.200900057
  24. Lee, M. R.; Gwon, J.; Park, J. H. Bull. Korean Chem. Soc. 2010, 31, 82. https://doi.org/10.5012/bkcs.2010.31.01.082
  25. Kumar, A. P.; Park, J. H. J. Chromatogr. A 2010, 1217, 4494. https://doi.org/10.1016/j.chroma.2010.04.044
  26. Park, J. H.; Whang, Y. C.; Jung, Y. J.; Okamoto, Y.; Yamamoto, C.; Carr, P. W.; McNeff, C. V. J. Sep. Sci. 2003, 26, 1331. https://doi.org/10.1002/jssc.200301544
  27. Kwon, S. H.; Okamoto, Y.; Yamamoto, C.; Cheong, W.; Moon, M. H.; Park, J. H. Anal. Sci. 2006, 22, 1525. https://doi.org/10.2116/analsci.22.1525
  28. Kumar, A. P.; Park, J. H. J. Chromatogr. A 2011, 1218, 5369. https://doi.org/10.1016/j.chroma.2011.06.002
  29. Kumar, A. P.; Park, J. H. J. Chromatogr. A 2011, 1218, 6548. https://doi.org/10.1016/j.chroma.2011.06.101
  30. Chankvetadze, B. Capillary Electrophoresis in Chiral Analysis; Wiley: New York, 1997.
  31. Gratz, S. R.; Stalcup, A. M. Anal. Chem. 1998, 70, 5166. https://doi.org/10.1021/ac980780i
  32. Evans, C. E.; Stalcup, A. M. Chirality 2003, 15, 709. https://doi.org/10.1002/chir.10285
  33. Stalcup, A. M.; Gahm, K. H. Anal. Chem. 1996, 68, 1369. https://doi.org/10.1021/ac951199e
  34. Ma, S.; Shen, S.; Haddad, N.; Tang, W.; Wang, J.; Lee, H.; Yee, N.; Senanayake, C.; Grinberg, N. J. Chromatogr. A 2009, 1216, 1232. https://doi.org/10.1016/j.chroma.2008.12.016
  35. Zakaria, P.; Macka, M.; Haddad, P. R. J. Chromatogr. A 2003, 985, 493. https://doi.org/10.1016/S0021-9673(02)01393-6
  36. Ye, M.; Zou, H.; Lei, Z.; Wu, R.; Liu, Z.; Ni, J. Electrophoresis 2001, 22, 518. https://doi.org/10.1002/1522-2683(200102)22:3<518::AID-ELPS518>3.0.CO;2-4
  37. Park, J. H.; Lee, J. W.; Song, Y. T.; Ra, C. S.; Cha, J. S.; Ryoo, J. J.; Lee, W.; Kim, I. W.; Jang, M. D. J. Sep. Sci. 2004, 27, 977. https://doi.org/10.1002/jssc.200301713
  38. Randon, J.; Huguet, S.; Piram, A.; Puy, G.; Demesmay, C.; Rocca, J.-L. J. Chromatogr. A 2006, 1109, 19. https://doi.org/10.1016/j.chroma.2005.12.044
  39. Suresh, S. J.; Naik, V. M. J. Chem. Phys. 2002, 116, 4212. https://doi.org/10.1063/1.1445112
  40. Thompson, J. W.; Kaiser, T. J.; Jorgenson, J. W. J. Chromatogr. A 2006, 1134, 201. https://doi.org/10.1016/j.chroma.2006.09.006
  41. Bowser, M.; Bebault, G. M.; Peng, X.; Chen, D. D. Y. Electrophoresis 1997, 18, 2928. https://doi.org/10.1002/elps.1150181534
  42. Li, S.; Lloyd, D. K. J. Chromatogr. A 1994, 666, 321. https://doi.org/10.1016/0021-9673(94)80393-5
  43. Rizvi, S.; Shamsi, S. A. Electrophoresis 2004, 25, 853. https://doi.org/10.1002/elps.200305762
  44. Gong, Y.; Lee, H. K. Helv. Chim. Acta 2002, 85, 3283. https://doi.org/10.1002/1522-2675(200210)85:10<3283::AID-HLCA3283>3.0.CO;2-H

Cited by

  1. Nanoparticle-based monoliths for chromatographic separations vol.139, pp.17, 2014, https://doi.org/10.1039/C4AN00593G
  2. Advances in enantiomeric resolution on monolithic chiral stationary phases in liquid chromatography and electrochromatography vol.37, pp.9-10, 2014, https://doi.org/10.1002/jssc.201301326
  3. Cyclodextrin-Functionalized Monolithic Capillary Columns: Preparation and Chiral Applications vol.28, pp.2, 2015, https://doi.org/10.1002/chir.22550
  4. Strategy Approach for Direct Enantioseparation of Hyoscyamine Sulfate and Zopiclone on a Chiral αl‐Acid Glycoprotein Column and Determination of Their Eutomers: Thermodynamic St vol.28, pp.1, 2013, https://doi.org/10.1002/chir.22536
  5. Enantiomeric Recognition and Separation by Chiral Nanoparticles vol.24, pp.6, 2013, https://doi.org/10.3390/molecules24061007
  6. Indirect synchronous fluorescence spectroscopy and direct high‐performance thin‐layer chromatographic methods for enantioseperation of zopiclone and determination of chiral‐switching vol.31, pp.5, 2013, https://doi.org/10.1002/chir.23063