References
- Aflalo, C., Meshulam, Y., Zarka, A. & Boussiba, S. 2007. On the relative efficiency of two-vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol. Bioeng. 98:300-305. https://doi.org/10.1002/bit.21391
- Borowitzka, M. A., Huisman, J. M. & Osborn, A. 1991. Culture of the astaxanthin-producing green alga Haematococcus pluvialis. 1. Effects of nutrients on growth and cell type. J. Appl. Phycol. 3:295-304. https://doi.org/10.1007/BF02392882
- Boussiba, S. & Vonshak, A. 1991. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol. 32:1077-1082.
- Fabregas, J., Otero, A., Maseda, A. & Dominguez, A. 2001. Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J. Biotechnol. 89:65-71. https://doi.org/10.1016/S0168-1656(01)00289-9
- Garcia-Malea, M. C., Acien, F. G., Fernandez, J. M., Ceron, M. C. & Molina, E. 2006. Continuous production of green cells of Haematococcus pluvialis: modeling of the irradiance effect. Enzyme Microb. Technol. 38:981-989. https://doi.org/10.1016/j.enzmictec.2005.08.031
- Garcia-Malea, M. C., Brindley, C., Del Rio, E., Acien, F. G., Fernandez, J. M. & Molina, E. 2005. Modelling of growth and accumulation of carotenoids in Haematococcus pluvialis as a function of irradiance and nutrients supply. Biochem. Eng. J. 26:107-114. https://doi.org/10.1016/j.bej.2005.04.007
- Garcia-Malea Lopez, M. C., Del Rio Sanchez, E., Casas Lopez, J. L., Acien Fernandez, F. G., Fernandez Sevilla, J. M., Rivas, J., Guerrero, M. G. & Grima, E. M. 2006. Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. J. Biotechnol. 123:329-342.
- Guerin, M., Huntley, M. E. & Olaizola, M. 2003. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21:210-216. https://doi.org/10.1016/S0167-7799(03)00078-7
- Han, D., Li, Y. & Hu, Q. 2013. Biology and large-scale production of Haematococcus pluvialis. In Richmond, A. & Hu, Q. (Eds.) Handbook of Microalgal Culture. 2nd ed. Wiley-Blackwell, Chichester, WS, pp. 388-405.
- Han, D., Wang, J. F., Sommerfeld, M. & Hu, Q. 2012. Susceptibility and protective mechanisms of motile and nonmotile cells of Haematococcus pluvialis (Chlorophyceae) to photooxidative stress. J. Phycol. 48:693-705. https://doi.org/10.1111/j.1529-8817.2012.01147.x
- Hu, Q. & Richmond, A. 1996. Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. J. Appl. Phycol. 8:139-145. https://doi.org/10.1007/BF02186317
- Hu, Q., Zarmi, Y. & Richmond, A. 1998. Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur. J. Phycol. 33:165-171. https://doi.org/10.1080/09670269810001736663
- Johnson, E. A. & An, G. -H. 1991. Astaxanthin from microbial sources. Crit. Rev. Biotechnol. 11:297-326. https://doi.org/10.3109/07388559109040622
- Karppi, J., Rissanen, T. H., Nyyssonen, K., Kaikkonen, J., Olsson, A. G., Voutilainen, S. & Salonen, J. T. 2007. Effects of astaxanthin supplementation on lipid peroxidation. Int. J. Vitam. Nutr. Res. 77:3-11. https://doi.org/10.1024/0300-9831.77.1.3
- Kobayashi, M. 2000. In vivo antioxidant role of astaxanthin under oxidative stress in the green alga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 54:550-555. https://doi.org/10.1007/s002530000416
- Lichtenthaler, H. K. & Wellburn, A. R. 1983. Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 603:591-592.
- Lorenz, R. T. & Cysewski, G. R. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18:160-167. https://doi.org/10.1016/S0167-7799(00)01433-5
- Miki, W. 1991. Biological functions and activities of animal carotenoids. Pure Appl. Chem. 63:141-146. https://doi.org/10.1351/pac199163010141
- Nishino, H. 1998. Cancer prevention by carotenoids. Mutat. Res. 402:159-163. https://doi.org/10.1016/S0027-5107(97)00293-5
- Orosa, M., Franqueira, D., Cid, A. & Abalde, J. 2001. Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnol. Lett. 23:373-378. https://doi.org/10.1023/A:1005624005229
- Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G. 1971. Purification and properties of unicellular bluegreen algae (order Chroococcales). Bacteriol. Rev. 35:171-205.
- Stirbet, A., & Govindjee. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basic and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B 104:236-257. https://doi.org/10.1016/j.jphotobiol.2010.12.010
- Torzillo, G., Goksan, T., Faraloni, C., Kopecky, J. & Masojidek, J. 2003. Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage. J. Appl. Phycol. 15:127-136. https://doi.org/10.1023/A:1023854904163
- Wang, J., Han, D., Sommerfeld, M. R., Lu, C. & Hu, Q. 2013. Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. J. Appl. Phycol. 25:253-260. https://doi.org/10.1007/s10811-012-9859-4
- Zhang, B. Y., Geng, Y. H., Li, Z. K., Hu, H. J. & Li, Y. G. 2009. Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture 295:275-281. https://doi.org/10.1016/j.aquaculture.2009.06.043
Cited by
- The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light–dark cyclic cultivation vol.167, 2014, https://doi.org/10.1016/j.biortech.2014.06.030
- The water footprint of biofilm cultivation of Haematococcus pluvialis is greatly decreased by using sealed narrow chambers combined with slow aeration rate vol.37, pp.9, 2015, https://doi.org/10.1007/s10529-015-1864-7
- Sequential Heterotrophy–Dilution–Photoinduction Cultivation of Haematococcus pluvialis for efficient production of astaxanthin vol.198, 2015, https://doi.org/10.1016/j.biortech.2015.09.031
- Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products vol.7, 2016, https://doi.org/10.3389/fpls.2016.00531
- Effect of moderate static electric field on the growth and metabolism of Chlorella vulgaris vol.218, 2016, https://doi.org/10.1016/j.biortech.2016.07.018
- A techno-economic assessment of an algal-based biorefinery vol.18, pp.6, 2016, https://doi.org/10.1007/s10098-016-1159-2
- Attached cultivation of Haematococcus pluvialis for astaxanthin production vol.158, 2014, https://doi.org/10.1016/j.biortech.2014.02.044
- Carotenoids from microalgae: A review of recent developments vol.34, pp.8, 2016, https://doi.org/10.1016/j.biotechadv.2016.10.005
- Dynamic modelling of Haematococcus pluvialis photoinduction for astaxanthin production in both attached and suspended photobioreactors vol.13, 2016, https://doi.org/10.1016/j.algal.2015.11.019
- Biorefinery of microalgae - opportunities and constraints for different production scenarios vol.9, pp.6, 2014, https://doi.org/10.1002/biot.201300142
- Intraspecific trait variation affecting astaxanthin productivity in two Haematococcus (Chlorophyceae) species vol.21, 2017, https://doi.org/10.1016/j.algal.2016.10.021
- Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production vol.31, pp.3, 2016, https://doi.org/10.4490/algae.2016.31.8.18
- Enhanced production of astaxanthin by Chromochloris zofingiensis in a microplate-based culture system under high light irradiation 2017, https://doi.org/10.1016/j.biortech.2017.08.102
- Some Promising Microalgal Species for Commercial Applications: A review vol.110, 2017, https://doi.org/10.1016/j.egypro.2017.03.177
- Isolation and characterization of bacterial strains capable of growing on malathion and fenitrothion and the use of date syrup as an additional substrate vol.75, pp.3, 2018, https://doi.org/10.1080/00207233.2017.1380981
- Simple method for preserving large quantity of high viability red biomass of Haematococcus in the medium term (3~6 months) pp.1573-5176, 2019, https://doi.org/10.1007/s10811-018-1723-8
- Seasonal Assessment of Biomass and Fatty Acid Productivity by Tetraselmis sp. in the Ocean Using Semi-Permeable Membrane Photobioreactors vol.26, pp.6, 2016, https://doi.org/10.4014/jmb.1601.01031
- Optimization of Arthrospira platensis (Spirulina) Growth: From Laboratory Scale to Pilot Scale vol.3, pp.4, 2013, https://doi.org/10.3390/fermentation3040059
- Characterization of the Growth, Total Lipid and Fatty Acid Profiles in Microalga, Nannochloropsis oceanica under Different Nitrogen Sources vol.47, pp.1, 2013, https://doi.org/10.4014/mbl.1801.01004
- Single-Stage Astaxanthin Production Enhances the Nonmevalonate Pathway and Photosynthetic Central Metabolism in Synechococcus sp. PCC 7002 vol.8, pp.12, 2013, https://doi.org/10.1021/acssynbio.9b00280
- The Influence of Dissolved Organic Carbon on the Microbial Community Associated with Tetraselmis striata for Bio-Diesel Production vol.10, pp.10, 2013, https://doi.org/10.3390/app10103601
- Propagation of Inoculum for Haematococcus pluvialis Microalgae Scale-Up Photobioreactor Cultivation System vol.10, pp.18, 2013, https://doi.org/10.3390/app10186283
- Simultaneous promotion of photosynthesis and astaxanthin accumulation during two stages of Haematococcus pluvialis with ammonium ferric citrate vol.750, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2020.141689
- Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements vol.10, pp.12, 2013, https://doi.org/10.3390/foods10123002