DOI QR코드

DOI QR Code

Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation

  • Wang, Junfeng (Laboratory for Algae Research and Biotechnology, College of Technology and Innovation, Arizona State University Polytechnic Campus) ;
  • Sommerfeld, Milton R. (Laboratory for Algae Research and Biotechnology, College of Technology and Innovation, Arizona State University Polytechnic Campus) ;
  • Lu, Congming (Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences) ;
  • Hu, Qiang (Laboratory for Algae Research and Biotechnology, College of Technology and Innovation, Arizona State University Polytechnic Campus)
  • Received : 2013.04.15
  • Accepted : 2013.05.10
  • Published : 2013.06.15

Abstract

Nitrogen availability and cell density each affects growth and cellular astaxanthin content of Haematococcus pluvialis, but possible combined effects of these two factors on the content and productivity of astaxanthin, especially under outdoor culture conditions, is less understood. In this study, the effects of the initial biomass densities IBDs of 0.1, 0.5, 0.8, 1.5, 2.7, 3.5, and 5.0 g $L^{-1}$ DW and initial nitrogen concentrations of 0, 4.4, 8.8, and 17.6 mM nitrate on growth and cellular astaxanthin content of H. pluvialis Flotow K-0084 were investigated in outdoor glass column photobioreactors in a batch culture mode. A low IBD of 0.1 g $L^{-1}$ DW led to photo-bleaching of the culture within 1-2 days. When the IBD was 0.5 g $L^{-1}$ and above, the rate at which the increase in biomass density and the astaxanthin content on a per cell basis was higher at lower IBD. When the IBD was optimal (i.e., 0.8 g $L^{-1}$), the maximum astaxanthin content of 3.8% of DW was obtained in the absence of nitrogen, whereas the maximum astaxanthin productivity of 16.0 mg $L^{-1}\;d^{-1}$ was obtained in the same IBD culture containing 4.4 mM nitrogen. The strategies for achieving maximum Haematococcus biomass productivity and for maximum cellular astaxanthin content are discussed.

Keywords

References

  1. Aflalo, C., Meshulam, Y., Zarka, A. & Boussiba, S. 2007. On the relative efficiency of two-vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol. Bioeng. 98:300-305. https://doi.org/10.1002/bit.21391
  2. Borowitzka, M. A., Huisman, J. M. & Osborn, A. 1991. Culture of the astaxanthin-producing green alga Haematococcus pluvialis. 1. Effects of nutrients on growth and cell type. J. Appl. Phycol. 3:295-304. https://doi.org/10.1007/BF02392882
  3. Boussiba, S. & Vonshak, A. 1991. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol. 32:1077-1082.
  4. Fabregas, J., Otero, A., Maseda, A. & Dominguez, A. 2001. Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J. Biotechnol. 89:65-71. https://doi.org/10.1016/S0168-1656(01)00289-9
  5. Garcia-Malea, M. C., Acien, F. G., Fernandez, J. M., Ceron, M. C. & Molina, E. 2006. Continuous production of green cells of Haematococcus pluvialis: modeling of the irradiance effect. Enzyme Microb. Technol. 38:981-989. https://doi.org/10.1016/j.enzmictec.2005.08.031
  6. Garcia-Malea, M. C., Brindley, C., Del Rio, E., Acien, F. G., Fernandez, J. M. & Molina, E. 2005. Modelling of growth and accumulation of carotenoids in Haematococcus pluvialis as a function of irradiance and nutrients supply. Biochem. Eng. J. 26:107-114. https://doi.org/10.1016/j.bej.2005.04.007
  7. Garcia-Malea Lopez, M. C., Del Rio Sanchez, E., Casas Lopez, J. L., Acien Fernandez, F. G., Fernandez Sevilla, J. M., Rivas, J., Guerrero, M. G. & Grima, E. M. 2006. Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. J. Biotechnol. 123:329-342.
  8. Guerin, M., Huntley, M. E. & Olaizola, M. 2003. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21:210-216. https://doi.org/10.1016/S0167-7799(03)00078-7
  9. Han, D., Li, Y. & Hu, Q. 2013. Biology and large-scale production of Haematococcus pluvialis. In Richmond, A. & Hu, Q. (Eds.) Handbook of Microalgal Culture. 2nd ed. Wiley-Blackwell, Chichester, WS, pp. 388-405.
  10. Han, D., Wang, J. F., Sommerfeld, M. & Hu, Q. 2012. Susceptibility and protective mechanisms of motile and nonmotile cells of Haematococcus pluvialis (Chlorophyceae) to photooxidative stress. J. Phycol. 48:693-705. https://doi.org/10.1111/j.1529-8817.2012.01147.x
  11. Hu, Q. & Richmond, A. 1996. Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. J. Appl. Phycol. 8:139-145. https://doi.org/10.1007/BF02186317
  12. Hu, Q., Zarmi, Y. & Richmond, A. 1998. Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur. J. Phycol. 33:165-171. https://doi.org/10.1080/09670269810001736663
  13. Johnson, E. A. & An, G. -H. 1991. Astaxanthin from microbial sources. Crit. Rev. Biotechnol. 11:297-326. https://doi.org/10.3109/07388559109040622
  14. Karppi, J., Rissanen, T. H., Nyyssonen, K., Kaikkonen, J., Olsson, A. G., Voutilainen, S. & Salonen, J. T. 2007. Effects of astaxanthin supplementation on lipid peroxidation. Int. J. Vitam. Nutr. Res. 77:3-11. https://doi.org/10.1024/0300-9831.77.1.3
  15. Kobayashi, M. 2000. In vivo antioxidant role of astaxanthin under oxidative stress in the green alga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 54:550-555. https://doi.org/10.1007/s002530000416
  16. Lichtenthaler, H. K. & Wellburn, A. R. 1983. Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 603:591-592.
  17. Lorenz, R. T. & Cysewski, G. R. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18:160-167. https://doi.org/10.1016/S0167-7799(00)01433-5
  18. Miki, W. 1991. Biological functions and activities of animal carotenoids. Pure Appl. Chem. 63:141-146. https://doi.org/10.1351/pac199163010141
  19. Nishino, H. 1998. Cancer prevention by carotenoids. Mutat. Res. 402:159-163. https://doi.org/10.1016/S0027-5107(97)00293-5
  20. Orosa, M., Franqueira, D., Cid, A. & Abalde, J. 2001. Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnol. Lett. 23:373-378. https://doi.org/10.1023/A:1005624005229
  21. Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G. 1971. Purification and properties of unicellular bluegreen algae (order Chroococcales). Bacteriol. Rev. 35:171-205.
  22. Stirbet, A., & Govindjee. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basic and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B 104:236-257. https://doi.org/10.1016/j.jphotobiol.2010.12.010
  23. Torzillo, G., Goksan, T., Faraloni, C., Kopecky, J. & Masojidek, J. 2003. Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage. J. Appl. Phycol. 15:127-136. https://doi.org/10.1023/A:1023854904163
  24. Wang, J., Han, D., Sommerfeld, M. R., Lu, C. & Hu, Q. 2013. Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. J. Appl. Phycol. 25:253-260. https://doi.org/10.1007/s10811-012-9859-4
  25. Zhang, B. Y., Geng, Y. H., Li, Z. K., Hu, H. J. & Li, Y. G. 2009. Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture 295:275-281. https://doi.org/10.1016/j.aquaculture.2009.06.043

Cited by

  1. The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light–dark cyclic cultivation vol.167, 2014, https://doi.org/10.1016/j.biortech.2014.06.030
  2. The water footprint of biofilm cultivation of Haematococcus pluvialis is greatly decreased by using sealed narrow chambers combined with slow aeration rate vol.37, pp.9, 2015, https://doi.org/10.1007/s10529-015-1864-7
  3. Sequential Heterotrophy–Dilution–Photoinduction Cultivation of Haematococcus pluvialis for efficient production of astaxanthin vol.198, 2015, https://doi.org/10.1016/j.biortech.2015.09.031
  4. Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products vol.7, 2016, https://doi.org/10.3389/fpls.2016.00531
  5. Effect of moderate static electric field on the growth and metabolism of Chlorella vulgaris vol.218, 2016, https://doi.org/10.1016/j.biortech.2016.07.018
  6. A techno-economic assessment of an algal-based biorefinery vol.18, pp.6, 2016, https://doi.org/10.1007/s10098-016-1159-2
  7. Attached cultivation of Haematococcus pluvialis for astaxanthin production vol.158, 2014, https://doi.org/10.1016/j.biortech.2014.02.044
  8. Carotenoids from microalgae: A review of recent developments vol.34, pp.8, 2016, https://doi.org/10.1016/j.biotechadv.2016.10.005
  9. Dynamic modelling of Haematococcus pluvialis photoinduction for astaxanthin production in both attached and suspended photobioreactors vol.13, 2016, https://doi.org/10.1016/j.algal.2015.11.019
  10. Biorefinery of microalgae - opportunities and constraints for different production scenarios vol.9, pp.6, 2014, https://doi.org/10.1002/biot.201300142
  11. Intraspecific trait variation affecting astaxanthin productivity in two Haematococcus (Chlorophyceae) species vol.21, 2017, https://doi.org/10.1016/j.algal.2016.10.021
  12. Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production vol.31, pp.3, 2016, https://doi.org/10.4490/algae.2016.31.8.18
  13. Enhanced production of astaxanthin by Chromochloris zofingiensis in a microplate-based culture system under high light irradiation 2017, https://doi.org/10.1016/j.biortech.2017.08.102
  14. Some Promising Microalgal Species for Commercial Applications: A review vol.110, 2017, https://doi.org/10.1016/j.egypro.2017.03.177
  15. Isolation and characterization of bacterial strains capable of growing on malathion and fenitrothion and the use of date syrup as an additional substrate vol.75, pp.3, 2018, https://doi.org/10.1080/00207233.2017.1380981
  16. Simple method for preserving large quantity of high viability red biomass of Haematococcus in the medium term (3~6 months) pp.1573-5176, 2019, https://doi.org/10.1007/s10811-018-1723-8
  17. Seasonal Assessment of Biomass and Fatty Acid Productivity by Tetraselmis sp. in the Ocean Using Semi-Permeable Membrane Photobioreactors vol.26, pp.6, 2016, https://doi.org/10.4014/jmb.1601.01031
  18. Optimization of Arthrospira platensis (Spirulina) Growth: From Laboratory Scale to Pilot Scale vol.3, pp.4, 2013, https://doi.org/10.3390/fermentation3040059
  19. Characterization of the Growth, Total Lipid and Fatty Acid Profiles in Microalga, Nannochloropsis oceanica under Different Nitrogen Sources vol.47, pp.1, 2013, https://doi.org/10.4014/mbl.1801.01004
  20. Single-Stage Astaxanthin Production Enhances the Nonmevalonate Pathway and Photosynthetic Central Metabolism in Synechococcus sp. PCC 7002 vol.8, pp.12, 2013, https://doi.org/10.1021/acssynbio.9b00280
  21. The Influence of Dissolved Organic Carbon on the Microbial Community Associated with Tetraselmis striata for Bio-Diesel Production vol.10, pp.10, 2013, https://doi.org/10.3390/app10103601
  22. Propagation of Inoculum for Haematococcus pluvialis Microalgae Scale-Up Photobioreactor Cultivation System vol.10, pp.18, 2013, https://doi.org/10.3390/app10186283
  23. Simultaneous promotion of photosynthesis and astaxanthin accumulation during two stages of Haematococcus pluvialis with ammonium ferric citrate vol.750, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2020.141689
  24. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements vol.10, pp.12, 2013, https://doi.org/10.3390/foods10123002