DOI QR코드

DOI QR Code

Degradation of the Pd catalytic layer electrolyte in dye sensitized solar cells

염료감응태양전지에서 Pd 촉매층의 전해질과의 반응에 따른 특성 저하

  • Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 노윤영 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2012.12.04
  • Accepted : 2013.04.11
  • Published : 2013.04.30

Abstract

A TCO-less palladium (Pd) catalytic layer on the glass substrate was assessed as the counter electrode (CE) in a dye sensitized solar cell (DSSC) to confirm the stability of Pd with the $I^-/I_3{^-}$electrolyte on the DSSC performance. A 90nm-thick Pd film was deposited by a thermal evaporator. Finally, DSSC devices of $0.45cm^2$ with glass/FTO/blocking layer/$TiO_2$/dye/electrolyte(10 mM LiI + 1 mM $I_2$ + 0.1 M $LiClO_4$ in acetonitrile solution)/Pd/glass structure was prepared. We investigated the microstructure and photovoltaic property at 1 and 12 hours after the sample preparation. The optical microscopy, field emission scanning electron microscopy (FESEM), cyclic voltammetry measurement (C-V), and current voltage (I-V) were employed to measure the microstructure and photovoltaic property evolution. Microstructure analysis showed that the corrosion by reaction between the Pd layer and the electrolyte occurred as time went by, which led the decrease of the catalytic activity and the efficiency. I-V result revealed that the energy conversion efficiency after 1 and 12 hours was 0.34% and 0.15%, respectively. Our results implied that we might employ the other non-$I^-/I_3{^-}$electrolyte or the other catalytic metal layers to guarantee the long term stability of the DSSC devices.

기존 DSSC의 상대전극을 TCO-less로 하여 도전성과 촉매기능을 동시에 가지고 있는 Pd의 안정성 확인을 위해 열증착기를 채용하여 유리기판 전면에 Pd를 90nm 두께로 증착하고 전해질과의 반응 안정성을 확인하였다. $0.45cm^2$급 면적을 가진 glass/FTO/blocking layer/$TiO_2$/dye/electrolyte(10 mM LiI + 1 mM $I_2$ + 0.1 M $LiClO_4$ in acetonitrile solution)/Pd/glass 구조의 DSSC 소자를 만들고, 시편제작 1시간, 12시간 후의 변화를 육안분석, 광학현미경과 FESEM을 이용하여 미세구조 분석을 진행하고, 전기적 분석은 각각 C-V(cyclic voltammetry measurements), I-V(current voltage) 분석을 통해 확인하였다. 미세구조 분석을 통하여 시간이 지남에 따라 확연히 Pd과 전해질이 반응하여 부식되는 것을 확인하였고, 전기적으로도 시간이 지남에 따라 촉매활동도와 효율이 감소하는 것을 확인하였다. 최종 효율은 1시간 후에는 0.34%의 광전효율을 보였으나 12시간 후에는 0.15%를 나타내어 약 44%로 감소하였다. 따라서 염료감응태양전지에 Pd촉매를 채용하기 위해 $I^-/I_3{^-}$ 전해질이 아닌 다른 전해질을 사용하거나 Pd 전극이 아닌 다른 촉매재를 사용해야 함을 확인하였다.

Keywords

References

  1. M. Gratzel, "Photoelectrochemical cells", Nature. 414, pp. 338, 2001. DOI: http://dx.doi.org/10.1038/35104607
  2. J. Chang, et al., "High-performance nanostructured inorganic-organic heterojunction solar cells", Nano Lett. 10, pp. 2609-2612, 2010. DOI: http://dx.doi.org/10.1021/nl101322h
  3. M. Gratzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells", J. Photochem. Photobiol. A. 164, pp. 3-14, 2004. DOI: http://dx.doi.org/10.1016/j.jphotochem.2004.02.023
  4. B. O'Regan, et al., "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", Nature, 353, pp. 737, 1991. DOI: http://dx.doi.org/10.1038/353737a0
  5. K. Jiang, et al., "Photovoltaics based on hybrdization of effective dye-sensitized titanium oxide and hole-conductive polymer P3HT", Adv. Funct. Mater. 19, pp. 2481-2485, 2009. DOI: http://dx.doi.org/10.1002/adfm.200900283
  6. K. Kim, et al., "Improvement of electron transport by low-temperature chemically assisted sintering in dye-sensitized solar cell", J. of Photochem. Photobiol. A: Chemistry. 204, pp. 144-147, 2009. DOI: http://dx.doi.org/10.1021/ic0508371
  7. M. Gratzel, "Solar energy conversion by dye-sensitized photovoltaic cells", Inorg. Chem. 44, pp. 6841-6851, 2005. https://doi.org/10.1021/ic0508371
  8. E. Olsen, et al., "Dissolution of platinum in methoxy propionitrile containing LiI/I2", Sol. Energy Mater. Sol. Cells. 63, pp. 26-273, 2000.
  9. A. Kay, et al., "Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder", Sol. Energy Mater. Sol. Cells. 44, pp. 99-117, 1996. DOI: http://dx.doi.org/10.1016/0927-0248(96)00063-3
  10. K. Kohler, et al., "Highly active palladium/activated carbon catalysts for heck reactions:correlation of activity, catalyst properties, and Pd leaching", Chem. Eur. J. 8, pp. 622, 2002. DOI: http://dx.doi.org/10.1002/1521-3765(20020201)8:3<622::AID-CHEM622>3.0.CO;2-0
  11. L. X. Yin, et al., "Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts", Chem. Rev. 107, pp. 133-173, 2007. DOI: http://dx.doi.org/10.1021/cr0505674
  12. D. Balachari, et al., "Efficient synthesis of 5-aryl-2-vinylfurans by palladium catalyzed cross-coupling strategies", Tetrahedron Lett. 40, pp. 4769-4773, 1999. DOI: http://dx.doi.org/10.1016/S0040-4039(99)00817-5
  13. G. W. Lee, et al., "Evaluation on over photocurrents measured from unmasked dye-sensitized solar cells", Solar Energy, 84, pp. 418-425, 2010. DOI: http://dx.doi.org/10.1016/j.solener.2009.12.012
  14. Y. Y. Noh, et al., "Property of palladium counter electrode for dye sensitized solar cells", J. Kor. Inst. Met. & Mater. in pressed, 2012.
  15. J. J. Han, et al., "Effect of the Thickness of the Ru-coating on a Counter Electrode on the Performance of a Dye-sensitized Solar Cell", J. Kor. Inst. Met. & Mater. in pressed, 2012.

Cited by

  1. Degradation of a nano-thick Au/Pt bilayered catalytic layer with an electrolyte in dye sensitized solar cells vol.15, pp.6, 2014, https://doi.org/10.5762/KAIS.2014.15.6.4013