DOI QR코드

DOI QR Code

Comparison of Nitrate and Fluoride Removals between Reverse-Osmosis, Nano-Flitration, Electro-Adsorption, Elecero-Coagulation in Small Water Treatment Plants

소규모 수도시설의 역삼투(RO), 나노여과(NF), 전기흡착(EA), 전기응집(EC) 공정의 질산성 질소 및 불소 이온 제거 성능 비교

  • Han, Song-Hee (Department of Semiconductor & Display Engineering, Graduate School of BK21, Hoseo University) ;
  • Chang, In-Soung (Department of Environmental Engineering, Hoseo University)
  • 한송희 (호서대학교 대학원 BK21 반도체디스플레이공학과) ;
  • 장인성 (호서대학교 환경공학과)
  • Received : 2013.02.01
  • Accepted : 2013.04.11
  • Published : 2013.04.30

Abstract

Comparison of removal performance between reverse osmosis(RO), nanofiltration(NF), electrocoagulation(EC) and electroadsorption(EA) for removal of nitrate and fluoride often exceeded the limits of water quality in small water treatment plants. Removals of nitrate and fluoride were 72-92% and 74-85% in RO, 5-15% and 1% in NF, 99% and 44% in EA equipped with MWCNT coated electrodes, 82% and 77% in EA equipped with Cu-MWCNT electrodes, and 11-46% and 69-99% in EC. Consequently, high removals of both ions were anticipated in RO. Effective removal of both ions are possible for EC, but great production of sludge is a big burden. EA equipped with the MWCNT electrodes showed a great fluctuation in removal efficiency, and electrode stability should be upgraded.

소규모수도시설에서 수질기준을 자주 초과하는 질산성질소(NO3-N)와 불소(F-)를 제거하기 위해 역삼투(RO), 나노여과(NF), 전기흡착(EA), 전기응집(EC) 공정을 비교평가 하였다. RO는 질산성질소 72~92%, 불소 74~85%의 제거율을 나타내었고 NF는 질산성질소 5~15%, 불소는 1%의 제거율을 나타내었다. MWCNT를 코팅한 전극을 이용한 EA의 질산성질소는 99%, 불소는 44% 제거율을 보였다. 구리와 MWCNT 복합물 소결전극을 이용한 EA의 질산성질소는 82%, 불소는 77%의 제거율을 보였으나 구리가 용출되는 문제점이 발견되었다. EC의 질산성질소는 11~46%, 불소는 69~99%을 보였다. 결론적으로 RO는 질산성질소와 불소의 높은 제거율이 가능하나 에너지 비용이 부담된다. EC는 질산성질소와 불소의 효과적인 제거가 가능하나 슬러지 발생 부담이 있다. 반면 MWCNT를 활용한 EA는 전극 제조방법에 따라 제거율에 큰 차이를 보였으며 전극의 지속적 사용을 위한 안전성 확보가 시급한 개선점으로 나타났다.

Keywords

References

  1. Ministry of Environment, 2010 Statistics of waterworks, 2011.
  2. Me-Ea Kang et al., "Cognition on Quality and Cost of Small Drinking Water Plants in Gyungbuk Region", Journal of Korean Society of Water and Wastewater, 24(6), pp. 675-682, 2010.
  3. Hong-Tae Kim et al., "The study on methods for effective improvement at the small water supply system", Journal of Korean Society of Water Science and Technology, 15(4), pp. 65-76, 2007.
  4. Young-Gyu Kim, "A study on the drinking water quality and problem of simple piped water supply system in a rural area", Korean Journal of Environmental Health Society, 18(2), pp. 39-51, 1992.
  5. Ministry of Environment, Test results of the drinking water quality 2010.
  6. Ministry of Environment, Test results of the drinking water quality 2008.
  7. L.A. Richards et al., "Impact of speciation on fluoride, arsenic and magnesium retention by nanofiltration/reverse osmosis in remote Australian communities", Desalination, 248(1-3), pp. 177-183, 2009. DOI: http://dx.doi.org/10.1016/j.desal.2008.05.054
  8. R.S. Harisha et al., "Arsenic removal from drinking water using thin film composite nanofiltration membrane", Desalination, 252(1-3), pp. 75-80, 2010. DOI: http://dx.doi.org/10.1016/j.desal.2009.10.022
  9. J. Radjenovic et al., "Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment", Water Research, 42(14), pp. 3601-3610, 2008. DOI: http://dx.doi.org/10.1016/j.watres.2008.05.020
  10. J.J. Schoeman et al., "Nitrate removal with reverse osmosis in a rural area in South Africa", Desalination, 155(1), pp. 15-26, 2003. DOI: http://dx.doi.org/10.1016/S0011-9164(03)00235-2
  11. N. Sanjeev Kumar et al., "Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process", Journal of Hazardous Materials, 173(1-3), pp. 528-533, 2010. DOI: http://dx.doi.org/10.1016/j.jhazmat.2009.08.117
  12. Qianhai Zuo et al., "Combined electrocoagulation and electroflotation for removal of fluoride from drinking water", Journal of Hazardous Materials, 159(2-3), pp. 452-457, 2008. DOI: http://dx.doi.org/10.1016/j.jhazmat.2008.02.039
  13. Joo-Hyun Sim et al., "Study on the improvement of nitrate removal efficiency in multi-step electro-chemical process", Journal of Korean Society of Environmental Engineers, 30(2), pp. 155-160, 2008.
  14. Hyun-Chul Yu et al., "Electrochemical treatment of wastewater containing fluoride", Journal of Korean Society of Environmental Engineers, 29(10), pp. 1126-1130, 2007.
  15. Song-Hee Han et al., "Fluoride and nitrate removal in the decentralized water treatment plants by electroadsorption using carbon nano-tube electrodes", Journal of the Korea Academia-Industrial, 12(6), pp. 2904-2912, 2011. DOI: http://dx.doi.org/10.5762/KAIS.2011.12.6.2904
  16. Song-Hee Han et al., "Fluoride and nitrate removal in small water treatment plants using electro-coagulation", Journal of Korean Society of Water and Wastewater, 25(5), pp. 767-775, 2011.
  17. APHA, AWWA, WEF (1995) Standard method for the examination of water and wastewater, 19th edition