• 제목/요약/키워드: Small water treatment plant

검색결과 124건 처리시간 0.031초

하수처리수를 이용한 소수력발전소 설계 및 성능예측 (Design and Performance Prediction of Small Hydropower Plant Using Treated Effluent in Wastewater Treatment Plant)

  • 이철형;박완순;김원경;김정연;채규정
    • 한국태양에너지학회 논문집
    • /
    • 제33권2호
    • /
    • pp.78-83
    • /
    • 2013
  • A methodology to predict the output performance of small hydro power plant using treated effluent in waste water treatment plant has been studied. Existing waste water treatment plant located in Kyunggi-Do were selected and the output performance characteristics for these plants were analyzed. .Based on the models developed in this study, the hydrologic performance characteristics for SHP sites have been analyzed. The results show that the flow duration characteristics of small hydropower plant for waste water treatment plant have quite differences compared with small hydropower plant for the river. As a result, it was found that the developed model in this study can be used to analyze the output characteristics for small hydro power in waste water treatment plant. Additionally, primary design specifications such as design flowrate, capacity, operational rate and annual electricity production were estimated and discussed. It was found that the models developed in this study can be used to decide the design performance of small hydropower plant for waste water treatment plant effectively.

농촌 지역에서 유입 유량이 소규모 하수처리장 처리 효율에 미치는 영향 (Effect of sewage flow on treatment efficiency of small scale wastewater treatment plant in rural community)

  • 임지열;길경익
    • 한국습지학회지
    • /
    • 제18권3호
    • /
    • pp.267-274
    • /
    • 2016
  • 농촌 지역 하수도 보급은 하천, 호소 및 습지와 같은 수계 수질 보호를 위해서 반드시 필요하다. 또한 안정적인 소규모 하수처리장 운영을 위해서는 유입 유량과 농도의 변화가 큰 소규모 하수도 특성을 고려해야 한다. 본 연구에서는 봉화군 18개의 소규모 하수처리장 운전 결과를 통해 유입유량비 (유입 유량 / 설계 유량) 특성, 소규모 하수처리장 처리 효율에 미치는 영향과 적정 유입유량비 산정에 관한 연구를 수행하였다. 분석 결과 유입유량비는 여름철에 가장 높은 것으로 나타난 반면, 유입 하수 농도는 가을철과 겨울철에 높은 것으로 나타났다. 유입유량비가 증가할수록 처리 효율이 증가하는 경향을 보였으며, 영양염류 처리 효율이 유기물과 부유물질 처리 효율에 비해 민감한 영향을 받는 것으로 나타났다. 안정적인 소규모 하수처리장 처리 효율을 위해서는 유입유량비 0.8 이상을 유지해야 할 것으로 판단된다.

물관련 설비를 이용한 소수력발전 성능분석 (Performance Analysis for Small Hydro Power at Existing Water Treatment Facilities)

  • 박완순;이철형
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.134-137
    • /
    • 2008
  • A methodology to evaluate the performance analysis for small hydropower at existing water treatment facilities has been studied. It consists of two main parts; flow duration function which can describe existing water treatment facilities and performance analysis to estimate the output characteristics of small hydro power plants. The output performance characteristics for Mi-ho reservoir, Sum-kang low dam, Sun-cheon sewage treatment plant and Nam-dong purification plant were analyzed, using developed model. According to the simulation results, the predicted data show that the data were in good agreement with measured results. Also, it was found that the developed model in this study can be used to analyze the output characteristics for small hydro power at existing water treatment facilities.

  • PDF

구미하수처리장 방류구에서의 소수력발전 설치 및 운영에 관한 연구 (Feasibility Study on the Construction of Small Hydro-Power Plants in Gumi Sewage Treatment Plant Discharge Point)

  • 나동훈;이승환
    • 상하수도학회지
    • /
    • 제24권2호
    • /
    • pp.173-181
    • /
    • 2010
  • This study was conducted to investigate the possible installation of small hydro-power plant at the discharge point of Gumi sewage treatment plant (STP) using treated wastewater. Sufficient amount of water to transfer to electric power and the selection of proper location are two essential elements for the construction of small hydro-power facility. Preliminary analysis based on site visit and existing data in Gumi STP were made. Capacity of the small hydro-power plants and exact location were determined by geomorphological condition and flow duration characteristics. Flow duration characteristics and its duration curve were identified using monthly rainfall data in Gumi STP. Relevant facts of small hydro-power system in other STP were referred to adopt to Gumi STP situation. Flowrate of treated effluents and effective head between flow chamber and the location of hydraulic turbine in Gumi STP are found to be $3.70m^3$/sec and 3.5m respectively. Electric generation rate based on this feasibility study was estimated to be 86.3kW/h. Yearly electric generation rate was expected to be 932.4MMh. Proposed small hydro-power plant construction in Gumi STP is to be reasonable.

저탄소 녹색도시 조성을 위한 신도시 하수처리시설의 에너지 자립 효과 분석 (Effect Analysis on Self-supporting Energy of Newtown Sewage Treatment Facility for Low-carbon Green City)

  • 안수정;현경학;김종엽;정연규
    • 상하수도학회지
    • /
    • 제24권6호
    • /
    • pp.683-690
    • /
    • 2010
  • Renewable and unutilized energy (biogas power generation, wind power, solar, small hydro-power, sewage heat source, etc.) seems to be suitable to install for the sewage treatment facilities. There are 357 sewage treatment plants in 2007. 17 plants among these have been operating for self-supporting energy by using solar power, small hydro-power and biogas in 2008. Newly built sewage treatment plant of 96,000 $m^3$/day for a newtown is expected to get up to energy consumption of 10 GWh/yr. If solar energy, small hydro-power and biogas-equipments were applied to the new treatment plant, self-supporting energy of the new sewage treatment plant will get up to 56.1%. As a results, about 2,379ton $CO_2$/yr $CO_2$ emission reduction can be expected by using renewable energy. These efforts for self-supporting energy will lead sewage treatment plant to new energy recycle center.

기후변화를 고려한 소규모 하수처리장 건설에 대한 영향 분석 (Impact Analysis of Construction of Small Wastewater Treatment Plant Under Climate Change)

  • 박경신;정은성;김상욱;이길성
    • 한국물환경학회지
    • /
    • 제26권2호
    • /
    • pp.268-278
    • /
    • 2010
  • This study derived the effectiveness analysis results of construction of wastewater treatment plant under climate change scenarios. Canadian Global Coupled Model (CGCM3) was used and A1B and A2 of Special Report on Emission Scenario (SRES) were selected. Regional climate change data for this application were downscaled by using Statistical Downscaling Model (SDSM) and the flow and BOD concentration durations were obtained by using Hydrological Simulation Program - Fortran (HSPF). The criteria for low flow and water quality were chosen as $Q_{99}$, $Q_{95}$, $Q_{90}$ and $C_{30}$, $C_{10}$, $C_1$. The numbers of days to satisfy the instreamflow requirements and target BOD concentration were also added to the criteria for comparison. As a results, small wastewater treatment plant improved the water cycle due to the increase of low flow and the decrease of BOD concentration. But climate change affected the reduction of effectiveness significantly. Especially in case of construction of small waste water treatment plant in the upstream region, it is necessary to take climate change impact into consideration since it is usually related to the low flow and the water quality of the stream.

Status of Membrane Filtration in Japan : Application for Water Supply

  • Minami, Katsuyoshi
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1997년도 심포지움시리즈 Jan-97 수처리용 분리막 기술 및 응용
    • /
    • pp.55-62
    • /
    • 1997
  • In Japan, the membrane filtration is becoming a common technology for municipal water supply system especially for small plant. 6 years before (1991), the national research project of membrane filtration for small plant has started. The project was named as "MAC 21", MEMBRANE AQUA CENTURY 21. In the project the Ministry of Health and Welfare, 8 universities and 18 water treatment plant companies have been involved. This was the first attempt to research a common theme in joint with government, universities and private companies. After three years, the guide line for membrane filtration application for small plant has been established. This has promoted to install some actual plant. And also, another joint research for "RESEARCH OF MEMBRANE FILTRATION FOR ADVANCED WATER TREATMENT" has started in 1994 and completed in March, 1997. The project was named as MAC21. In the former project the main objectives were removal of turbidity and bacteria from water. However, in new project the objective was establishment of the further advanced membrane filtration technology which would be applicable for trace chemical components removal such as tri-halo-methane pre-courser, agricultural chemicals removal, offensive smell and taste removal and virus removal. For the objectives, application of nanofiltration and hybrid-system, a combination of micro-filtration ultra-filtration with biological, ozone and activated carbon treatment process have been studied. In addition, application of membrane filtration for treatment of back-wash waste water originated from membrane filters and conventional sand filters has.been studied. At the end of March of this year, about 30 membrane filtration plants are actually supplying the water, the total treatment capacity is about 6,000 m$^{3}$/day and another 20 will be installed within one year.led within one year.

  • PDF

LAND FARMING OF WATER PLANT ALUM SLUDGE ON ACID MINERAL SOIL AFFECTED BY ACID WATER

  • Lee, Seung-Sin;Kim, Jae-Gon;Moon, Hi-Soo;Kang, Il-Mo
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.182-186
    • /
    • 2001
  • An acid forest surface soil as a land farming medium was treated with a water plant alum sludge at 0 to 18%. Indian mustard was grown in the treated soil in a greenhouse for 5 weeks and watered with pH 4 tap water adjusted with a mixed acid (1HNO$_3$: 2H$_2$SO$_4$) during plant growth. Changes in soil property, leachate chemistry, plant growth, and plant uptake of elements by the sludge treatment were determined. The alum sludge treatment increased buffer capacity to acidity, hydraulic conductivity, water holding capacity, and phosphate adsorption of the soil and decreased bulk density and mobility of small particles. The sludge treatment reduced leaching of Al, Mg, K, Na, and root elongation. Plant did uptake less amount of the cations and P but more Ca with the sludge treatment.

  • PDF

에너지 자립형 MBR, A/O 공정의 효율 평가 (Efficiency evaluation of MBR, A/O processes utilizing self-sufficient energy)

  • 임세택;김진근
    • 상하수도학회지
    • /
    • 제28권3호
    • /
    • pp.305-314
    • /
    • 2014
  • A pilot plant (Q=5 $m^3/d$) study was implemented for small and medium sized personal wastewater treatment plant effluent to evaluate MBR and A/O processes utilizing self-sufficient energy composed of wind and solar energy. The removal efficiencies of BOD, SS, turbidity and color were sufficient for legal water quality standards for gray water. However, those of nitrogen and phosphorus could not meet legal regulations which suggested that further removal of those contaminants were needed for reuse of the treated water. Self-sufficient energy rate was 100 % for the pilot plant due to excessive design capacity. In this research, wind and solar energy system was applied considering geological characteristics, which significantly improved energy self-sufficiency. Substantial improvement on energy self-sufficiency can be obtained by optimized investment and operation at a full scale wastewater treatment plant.