DOI QR코드

DOI QR Code

P형 FeSi2의 열전물성에 미치는 입자크기 및 첨가물 영향

The Effect of Particle Size and Additives on the Thermoelectric Properties of P-type FeSi2

  • 배철훈 (인천대학교 생명공학부)
  • Pai, Chul-Hoon (Division of Bio-Engineering, Incheon National University)
  • 투고 : 2013.03.13
  • 심사 : 2013.04.11
  • 발행 : 2013.04.30

초록

Fe-Si계 합금은 우주탐사용으로 응용되고 있는 Si-Ge합금보다는 낮은 성능지수를 나타내지만 원료가 풍부하여 저가이고, 제조가 간단하며, $800^{\circ}C$까지 사용가능한 중고온용 열전발전재료이다. 본 연구에서는 고주파 진공유도로를 이용해서 제조한 p형 $FeSi_2$의 열전물성에 미치는 입자크기 및 첨가물 영향에 대해 조사하였다. 조성입자크기가 작을수록 소결밀도 증가와 함께 입자와 입자간의 연결성 향상에 의해 도전율이 증가하였다. Seebeck 계수는 600~800K에서 최고값을 나타내었고, 잔존하는 ${\varepsilon}$-FeSi 금속전도상에 의해 약간 감소하였다. $Fe_2O_3$$Fe_3O_4$를 첨가한 경우, 잔존 금속전도상 및 Si 결핍양 증가에 의해 도전율은 증가하였고 Seebeck 계수는 감소하였다. 반면에 $SiO_2$를 첨가한 경우에는 도전율과 Seebeck 계수 모두 상승하였다.

Although Fe-Si based alloy has lower figure of merit than Si-Ge alloy applied for space probe, its low cost related to abundant raw material, rather simple processing, high temperature resistance and reliability up to $800^{\circ}C$ made it one of the most promising middle temperature thermoelectric generation materials. The effect of particle size and additive on the thermoelectric properties of p-$FeSi_2$ prepared by a RF inductive furnace was investigated. The electrical conductivity increased slightly with decreasing particle size and hence better grain-to-grain connectivity due to the increase of density. The Seebeck coefficient exhibited the maximum value at about 600~800K and decreased slightly with increasing particle size. This must be due to the amount of residual metallic phase ${\varepsilon}$-FeSi. $Fe_2O_3$ and/or $Fe_3O_4$-doped specimens showed the higher electrical conductivity and the lower Seebeck coefficient due to increase of the metallic phase and Si-vacancy. On the other hand, $SiO_2$-doped specimen showed the higher electrical conductivity and the higher Seebeck coefficients.

Keywords

References

  1. D. M. Rowe and C. M. Bhandari, Modern Thermoelectrics, pp.35-48, Holt, Rinehart and Winston Ltd., London, 1983.
  2. I. B. Cadoff and E. Miller, Thermoelectric Materials and Devices, pp.173-183, Chapman and Hall Ltd., London, 1960.
  3. T. Kojima, M. Okamoto, and I. Nishida, "Semiconducting and Thermoelectric Properties of Sintered Iron Disilicide", Proceedings of the 5th International Conference on Thermoelectric Energy Conversion, pp.56-61, 1984.
  4. Y. Isoda, T. Ohkoshi, I. Nishida, and H. Kaibe, "Si-composition and Thermoelectric Property of Mn and Co doped $FeSi_2$", J. Mat. Sci. Soc. Jpn. 25, p.311-319, 1989.
  5. S. Tokita, T. Amano, M. Okabayashi, and I. Nishida, "Thermoelectric Properties of Mn- and Al-doped FeSi2", Proceedings of the 12th International Conference on Thermoelectric Energy Conversion, pp.197-200, 1993.
  6. C. H. Pai, T. H. Song and H. L. Lee, "Effect of Powder Oxidation on Thermoelectric Properties of Fe-Si Alloys", J. Ceram. Soc. Jpn. 109, p.386-390, 2001. DOI: http://dx.doi.org/10.2109/jcersj.109.1269_386
  7. T. Sakata, Y. Sakai, H. Yoshino and H. Fuji, "Studies on the Formation of FeSi2 from the FeSi-$Fe_2Si_5$ Eutectic", J. Less-Com. Met, 61, p.301-308, 1978. DOI: http://dx.doi.org/10.1016/0022-5088(78)90225-4
  8. T. Kojima, K. Masumoto and I. Nishida, "Formation of $FeSi_2$ from Sintered FeSi-$Fe_2Si_5$ Eutectic Alloy", J. Jpn. Inst. Met, 48, p.843-847, 1984. https://doi.org/10.2320/jinstmet1952.48.8_843
  9. K. Matsubara and T. Koyanagi, "Amorphous $FeSi_2$ Films as a new Thermoelectric Material Prepared by Ionized-Cluster Beam(ICB) Technique", Proceedings of the 6th International Conference on Thermoelectric Energy Conversion, pp.1-6, 1986.
  10. C. H. Pai, "Thermoelectric Properties of Mn-doped $FeSi_2$", J. Kor. Inst. Met & Mater, 46, p.315-320, 2008.

Cited by

  1. The Effect of Particle Size and Compaction Pressure on the Thermoelectric Properties of n-type FeSi2 vol.16, pp.7, 2015, https://doi.org/10.5762/KAIS.2015.16.7.4835