• Title/Summary/Keyword: Mn-doped FeSi2

Search Result 6, Processing Time 0.019 seconds

Thermoelectric Properties of Mn-doped FeSi2 (Mn 첨가 FeSi2의 열전변환특성)

  • Pai, Chul-Hoon;Park, Hyoung-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.315-320
    • /
    • 2008
  • The effect of Mn additive on the thermoelectric properties of Fe-Si alloys prepared by a RF inductive furnace was investigated. The electrical conductivity and Seebeck coefficient were measured as a function of temperature under Ar atmosphere to evaluate their applicability to thermoelectric energy conversion. The electrical conductivity of the specimens increased with increasing temperatures showing typical semiconducting behavior. The electrical conductivity of Mn-doped specimens are higher than that of undoped specimens and increased slightly with increasing the amount of Mn additive. This must be due to the difference in carrier concentration and the amount of residual metallic phase ${\varepsilon}$-FeSi(The ${\varepsilon}$-FeSi was detected in spite of 100 h annealing treatment at $830^{\circ}C$). And metallic conduction increased slightly with increasing the amount of Mn additive. On the other hand, Mn-doped specimens showed the lower Seebeck coefficient due to metallic phase. The power factor of Mn-doped specimens are higher than that of undoped specimens and would be affected by the electrical conductivity more than Seebeck coefficient.

Consolidation of p-type Fe(Mn)Si2 Thermoelectric Powder and Microstructure (P형 Fe(Mn)Si2 열전재료 분말의 성형 및 미세조직)

  • Shim, J.S.;Hong, S.J.;Chun, B.S.
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.345-351
    • /
    • 2008
  • The effects of the dopant (Mn) ratio on the microstructure and thermoelectric properties of $FeSi_2$ alloy were studied in this research. The alloy was fabricated by a combination process of ball milling and high pressure pressing. Structural behavior of the sintered bulks were systematically investigated by XRD, SEM, and optical microscopy. With increasing dopan (Mn) ratio, the density and ${\varepsilon}-FeSi$ phase of the sintered bulks increased and maximum density of 94% was obtained in the 0.07% Mn-doped alloy. The sintered bulks showed fine microstructure of ${\alpha}-Fe_{2}Si_{5}$, ${\varepsilon}-FeSi$ and ${\beta}-FeSi_2$ phase. The semiconducting phase of ${\beta}-FeSi_2$ was transformed from ${\alpha}-Fe_{2}Si_{5}+{\varepsilon}-FeSi$ phase by annealing.

The Effect of Particle Size and Additives on the Thermoelectric Properties of P-type FeSi2 (P형 FeSi2의 열전물성에 미치는 입자크기 및 첨가물 영향)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1883-1889
    • /
    • 2013
  • Although Fe-Si based alloy has lower figure of merit than Si-Ge alloy applied for space probe, its low cost related to abundant raw material, rather simple processing, high temperature resistance and reliability up to $800^{\circ}C$ made it one of the most promising middle temperature thermoelectric generation materials. The effect of particle size and additive on the thermoelectric properties of p-$FeSi_2$ prepared by a RF inductive furnace was investigated. The electrical conductivity increased slightly with decreasing particle size and hence better grain-to-grain connectivity due to the increase of density. The Seebeck coefficient exhibited the maximum value at about 600~800K and decreased slightly with increasing particle size. This must be due to the amount of residual metallic phase ${\varepsilon}$-FeSi. $Fe_2O_3$ and/or $Fe_3O_4$-doped specimens showed the higher electrical conductivity and the lower Seebeck coefficient due to increase of the metallic phase and Si-vacancy. On the other hand, $SiO_2$-doped specimen showed the higher electrical conductivity and the higher Seebeck coefficients.

Phase Transformation and Thermoelectric Properties of Fe0.92Mn0.08Si2 Prepared by Mechanical Alloying (기계적 합금화로 제조된 Fe0.92Mn0.08Si2의 상변화 및 열전 특성)

  • Kim, Young-Seob;Cho, Kyung-Won;Kim, Il-Ho;Ur, Soon-Chul;Lee, Young-Geun
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.292-296
    • /
    • 2003
  • In an attempt to enhance phase transformation and homogenization of Mn-doped $FeSi_2$, mechanical alloying of elemental powders was applied. Cold pressing and sintering in vacuum were carried out to produce a dense microstructure, and then isothermal annealing was employed to induce a phase transformation to the $\beta$-$FeSi_2$semiconductor. Phase transitions in this alloy system during the process were investigated by using XRD, EDS and SEM. As-milled powders after 100 h of milling were shown to be metastable state. As-sintered iron silicides consisted of untransformed mixture of $\alpha$-$Fe_2$$Si_{5}$and $\varepsilon$-FeSi phases. $\beta$-$FeSi_2$phase transformation was induced by subsequent isothermal annealing at $830^{\circ}C$, and near single phase of $\beta$-$FeSi_2$was obtained after 24 h of annealing. Thermoelectric properties in terms of Seebeck coefficient, and electrical conductivity were evaluated and correlated with phase transformation. Seebeck coefficient electrical resistivity and hardness increased with increasing annealing time due to $\beta$ phase transformation.

Additive Effects on Magnetic Properties in High Permeability Mn Zn Ferrite (고투자율 Mn-Zn 페라이트의 첨가물 효과에 따른 자기적 특성연)

  • Jeong, Gap-Gyo;Choe, Seung-Cheol
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.497-504
    • /
    • 1993
  • Effects of $Ta_2O_5,ZrO_2$ and $SiO_2$ addition on magnetic properties of 0.02wt%$Bi_2O_3$ and 0 . 0 5 wt%$CaCO_3$ doped Mn-Zn ferrites(58.5mol% $Fe_2O_3$, 25.5 mol% ZnO) were investigated. E:lectrlcal resistivity and magnetic properties such as the initial permeability($\mu_i$), loss factor(tan$\delta$), coercive force Hc(m0c) were measured. With lncreasing $Ta_2O_5$ and $ZrO_2$ addition, the following effects were observed: I ) Decreasing of the average grain size; 2) lncreasing of the electrical resistivity and initial permeability; 3) Ilecreasmg of loss factor values. (very low loss esprcially at high frequency region) ; 4 ) Fine and uniform microsrructures were obtamed at O.lwt% nddecl samples. In case of $SiO_2$ addition, anomalous grain growth and degradation of magnetic properties were observed. The obtained maximum initial permeability value was 6260 at IOkHz. $25^{\circ}C$ from 0.02wt%$Bi_2O_3$. 0.05wt%$CaCO_3$, 0.lwt%$Ta_2O_5$ added sample, the corresponded relative loss factor (tan$\delta /\mu_i$)for the sample was $4.2 \times 10^{-6}$.

  • PDF