DOI QR코드

DOI QR Code

Plasma Surface Modification of Graphene and Combination with Bacteria Cellulose

Graphene의 플라즈마 표면 개질과 박테리아 셀룰로오스와의 결합성 검토

  • Yim, Eun-Chae (Interdisciplinary program of graduate school for bioenergy and biomaterials, Chonnam National University) ;
  • Kim, Seong-Jun (Department of Environmental Engineering, Chonnam National University) ;
  • Oh, Il-Kwon (Division of Ocean Systems Engineering, School of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kee, Chang-Doo (School of Mechanical Systems Engineering, Chonnam National University)
  • 임은채 (전남대학교 바이오에너지 및 바이오소재 협동과정) ;
  • 김성준 (전남대학교 환경공학과) ;
  • 오일권 (한국과학기술원 해양시스템공학과) ;
  • 기창두 (전남대학교 기계공학과)
  • Received : 2012.12.27
  • Accepted : 2013.04.09
  • Published : 2013.06.01

Abstract

The study was focused to evaluate the possibility for combination membrane of bacterial cellulose (BC) and graphene with high electrical properties. BC with natural polymer matrix was known to have strong physical strength. For the combination of graphene with BC, the surface of graphene was modified with oxygen plasma by changing strength and time of radio waves in room temperature. Water contact angle of modified graphene grew smaller from $130^{\circ}$ to $12^{\circ}$. XPS analysis showed that oxygen content after treatment increased from 2.99 to 10.98%. Damage degree of graphene was examined from $I_D/I_G$ ratio of Raman analysis. $I_D/I_G$ ratio of non-treated graphene (NTG) was 0.11, and 0.36 to 0.43 in plasma treated graphene (PTG), increasing structural defects of PTG. XRD analysis of PTG membrane with BC was $2{\theta}$ same to BC only, indicating chemically combined membrane. In FT-IR analysis, 1,000 to 1,300 $cm^{-1}$ (C=O) peak indicating oxygen radicals in PTG membrane had formed was larger than NTG membrane. The results suggest that BC as an alternation of plastic material for graphene combination has a possibility in some degree on the part like transparent conductive films.

본 연구에서는 물리적 강도가 강한 천연 고분자인 박테리아 셀룰로오스(BC)를 기반으로 전기적 성질이 매우 뛰어난 그래핀을 결합시켜 터치 스크린과 같은 투명 전도성 필름을 제조할 수 있는 가능성을 확인하고자 한다. 그래핀을 BC와 결합하기 위해서 라디오파의 인가강도와 처리시간을 달리하여 상온에서 산소 플라즈마 처리를 통해 표면을 개질시켰다. 개질된 그래핀의 물에 대한 접촉각이 $130^{\circ}$에서 $12^{\circ}$로 매우 작아진 것으로 친수성이 향상되었다. 또한, XPS분석에서는 graphene 처리 전 산소함유량 2.99%에서 10.98%로 크게 증가하였다. 그래핀의 손상은 Raman 분석에서 $I_D/I_G$ 비로 정도를 알 수 있다. 처리 전 $I_D/I_G$ 비가 0.11로 손상 정도가 가장 낮았고, 처리 후 0.36~0.43으로 처리 전에 비해 그래핀의 구조적 결함이 증가하였다. 용해시킨 BC에 그래핀을 0~0.04 wt% 첨가하여 제조한 막의 XRD 분석에 의하면 BC막과 plasma 처리된 graphene이 함유된 결합막이 동일한 $2{\theta}$로서 화학적으로 잘 결합되었음을 확인하였다. 이는 SEM 이미지에서 BC와 그래핀의 결합 상태를 확인한 것과 일치하였다. FT-IR 분석에서 플라즈마 처리한 그래핀이 함유된 결합막의 1,000~1,300 $cm^{-1}$ (C=O)에서의 피크가 커진 것으로 보아 plasma 처리된 graphene에서 산소기가 생성되었음을 알 수 있었다. 이와 같은 결과로부터 BC의 물리적인 강점을 기반으로 하여 그래핀을 결합시킨다면 신규의 투명 전도성 소재를 개발할 수 있으리라 사료된다.

Keywords

References

  1. Di, C. A., Wei, D. C., Yu, G., Liu, Y. Q., Guo, Y. L. and Zhu, D. B., "Patterned Graphene As Source/drain Electrodes for Bottomcontact Organic Field-effect Transistors," Adv. Mater, 20, 3289-3293(2008). https://doi.org/10.1002/adma.200800150
  2. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., "Electric Field Effect in Atomically Thin Carbon Films," Science, 306, 666-669(2004). https://doi.org/10.1126/science.1102896
  3. Astumian, R. D. and Schelly, Z. A., "Geometric Effects of Reduction of Dimensionality in Interfacial Reactions," J. Am. Chem. Soc., 106, 304-308(1984). https://doi.org/10.1021/ja00314a008
  4. Dwight, D. W. and Riggs, W. M., "luoropolyrner Surface Studies," J. Colloid Interf. Sci., 47, 650-660(1974). https://doi.org/10.1016/0021-9797(74)90242-2
  5. Hegemann, D., Brunner, H. and Oehr, C., "Plasma Treatment of Polymers for Surface and Adhesion Improvement," Nucl. Instrum. Methods B 208, 281-286(2003). https://doi.org/10.1016/S0168-583X(03)00644-X
  6. Chen, J. R., Wang, X. Y. and Tomiji, W., "Wettability of Poly (ethylene terephthalate) Film Treated with Low-temperature Plasma and Their Surface Analysis by ESCA," J. Appl. Polym. Sci., 72, 1327-1333(1999). https://doi.org/10.1002/(SICI)1097-4628(19990606)72:10<1327::AID-APP13>3.0.CO;2-0
  7. Inagaki, N., Narushim, K., Tuchida, N. and Miyazaki, K., "Surface Characterization of Plasma-modified Poly(ethylene terephthalate) Film Surfaces," J. Polym. Sci. Part B: Polym. Phys., 42, 3727-3740(2004). https://doi.org/10.1002/polb.20234
  8. Okuji, S., Sekiya, M., Nakabayashi, M., Endo, H., Sakudo, N. and Nagai, K., "Surface Modification of Polymeric Substrates by Plasma-based Ion Implantation," Nucl. Instrum. Methods Phys. Res. B, 242, 353-356(2006). https://doi.org/10.1016/j.nimb.2005.08.153
  9. Novák, I., Pollák, V. and Chodák, I., "Study of Surface Properties of Polyolefins Modified by Corona Discharge Plasma," Plasma Process Polym., 3, 355-364(2006). https://doi.org/10.1002/ppap.200500163
  10. Süzer, S., Argun, A., Vatansever, O. and Aral, O., "XPS and Water Contact Angle Measurements on Aged and Corona-treated PP," J. Appl.Polym. Sci., 74, 1846-1850(1999). https://doi.org/10.1002/(SICI)1097-4628(19991114)74:7<1846::AID-APP29>3.0.CO;2-B
  11. Mathieson, I. and Bradley, R. H., "Improved Adhesion to Polymers by UV/ozone Surface Oxidation," Int. J. Adhes. Adhes., 16, 29-31(1996). https://doi.org/10.1016/0143-7496(96)88482-X
  12. Kim, H. C., Jeon, S. N., Kim, H. I., Choi, H. S., Hong, M. H. and Choi, K. S., "Effects of Oxygen Plasma-treated Graphene Oxide on Mechanical Properties of PMMA/Aluminum Hydroxide Composites," Polymer(Korea), 35, 565-573(2011).
  13. Feng, T., Xie, D., Tian, H., Peng, P., Zhang, D., Fu, D., Ren, T., Li, X., Zhu, H. and Jing, Y., "Multi-layer Graphene Treated by O2 Plasma for Transparent Conductive Electrode Applications," Mater. Lett, 73, 187-189(2012). https://doi.org/10.1016/j.matlet.2011.12.121
  14. Brown, A. J., "An Acetic Acid Ferment Which Forms Cellulose," J. Chem. Soc., 49, 432-439(1886). https://doi.org/10.1039/CT8864900432
  15. Rainer, J. and Luiz, F. F., "Production and Application of Microbial Cellulose," Polym. Degrad Stab. 58, 101-106(1998).
  16. Yamanake, S. and Watanabe, K., Applications of Bacterial Cellulose in Cellulosic Polymers, in a Gillbert (ed), Cellulosic Polymers, Blends and Composites, Hanser Inc., Cincinnati, OH, U S A.(1995).
  17. Shibazaki, H., Kuga, S. and Onabe, F., "Mechanical Properties of Papersheet Containing Bacterial Cellulose," Japan Tappi 48, 1621-1630(1994). https://doi.org/10.2524/jtappij.48.1621
  18. Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S. and Kong, J., "Large Area, Few Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition," Nano Lett., 9, 30-35(2009). https://doi.org/10.1021/nl801827v
  19. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y. and Hong, B. H., "Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes," Nature, 457, 706-710(2009). https://doi.org/10.1038/nature07719
  20. Son, Y. J., Sul, O. J., Chung, D. K., Han, I. S., Choi, Y. J. and Jeong, C. S., "Isolation and Characterization of Trichoderma sp. C-4 Producing Cellulases," Kor. J. Appl. Microbiol. Biotechnol., 25, 346-353(1997).
  21. Son, C. J., Chung, S. Y., Lee, J. E. and Kim, S. J., "Isolation and Cultivation Characteristics of Acetobacter xylinum KJ1 Producing Bacterial Cellulose in Shaking and Agitated Culture," J. Appl. Microbiol. Biotechnol. 12, 722-728(2002).
  22. Alexander, W. J. and Mitchell, R. L., "Rapid Measurement of Cellulose Viscosity by Nitration Methods," Anal. Chem. 21, 1497-1500(1949). https://doi.org/10.1021/ac60036a018
  23. Andrea, C. F., "Raman Spectroscopy of Grapheme and Graphite: Disorder, Electron-phonon Coupling, Doping and Nonadiabatic Effects," Solid State Commun. 143, 47-57(2007). https://doi.org/10.1016/j.ssc.2007.03.052
  24. Qi, H. S. Chang, C. Y. and Zhang, L. N., "Effects of Temperature and Molecular Weight on Dissolution of Cellulose in NaOH/urea Aqueous Solution," Cellulose.,15, 779-787(2008). https://doi.org/10.1007/s10570-008-9230-8
  25. Egal, M., Budtova, T. and Navard, P. R., "The Dissolution of Microcrystalline Cellulose in Sodiumhydroxide-urea Aqueous Solutions," Cellulose 15, 361-370(2008). https://doi.org/10.1007/s10570-007-9185-1
  26. Isogai, A. R., Saito, T. Y. and Fukuzumi, H. K., "TEMPO-oxidized Cellulose Nanofibers," Nanoscale, 3, 71-85(2011). https://doi.org/10.1039/c0nr00583e

Cited by

  1. Surface Modification of Fine Particle by Plasma Grafting in a Circulating Fluidized Bed Reactor under Reduced Pressure vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.614