DOI QR코드

DOI QR Code

Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency

  • Kim, Mi-Jin (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University) ;
  • Ahn, Jin-Soo (Dental Research Institute and Department of Dental Biomaterials Science, School of Dentistry, Seoul National University) ;
  • Kim, Ji-Hwan (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University) ;
  • Kim, Hae-Young (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University) ;
  • Kim, Woong-Chul (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University)
  • Received : 2012.10.29
  • Accepted : 2013.05.11
  • Published : 2013.05.31

Abstract

PURPOSE. This study aimed to identify the effects of the sintering conditions of dental zirconia on the grain size and translucency. MATERIALS AND METHODS. Ten specimens of each of two commercial brands of zirconia (Lava and KaVo) were made and sintered under five different conditions. Microwave sintering (MS) and conventional sintering (CS) methods were used to fabricate zirconia specimens. The dwelling time was 20 minutes for MS and 20 minutes, 2, 10, and 40 hours for CS. The density and the grain size of the sintered zirconia blocks were measured. Total transmission measurements were taken using a spectrophotometer. Two-way analysis of variance model was used for the analysis and performed at a type-one error rate of 0.05. RESULTS. There was no significant difference in density between brands and sintering conditions. The mean grain size increased according to sintering conditions as follows: MS-20 min, CS-20 min, CS-2 hr, CS-10 hr, and CS-40 hr for both brands. The mean grain size ranged from 347-1,512 nm for Lava and 373-1,481 nm for KaVo. The mean light transmittance values of Lava and KaVo were 28.39-34.48% and 28.09-30.50%, respectively. CONCLUSION. Different sintering conditions resulted in differences in grain size and light transmittance. To obtain more translucent dental zirconia restorations, shorter sintering times should be considered.

Keywords

References

  1. Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent 1996;75:18-32. https://doi.org/10.1016/S0022-3913(96)90413-8
  2. Fischer H, Weber M, Marx R. Lifetime prediction of all-ceramic bridges by computational methods. J Dent Res 2003; 82:238-242. https://doi.org/10.1177/154405910308200317
  3. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 2007;98:389-404. https://doi.org/10.1016/S0022-3913(07)60124-3
  4. Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fracture resistance of lithium disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: a laboratory study. Int J Prosthodont 2001;14:231-238.
  5. Chen YM, Smales RJ, Yip KH, Sung WJ. Translucency and biaxial flexural strength of four ceramic core materials. Dent Mater 2008;24:1506-1511. https://doi.org/10.1016/j.dental.2008.03.010
  6. Akagawa Y, Hosokawa R, Sato Y, Kamayama K. Comparison between freestanding and tooth-connected partially stabilized zirconia implants after two years' function in monkeys: a clinical and histologic study. J Prosthet Dent 1998;80:551-558. https://doi.org/10.1016/S0022-3913(98)70031-9
  7. Ichikawa Y, Akagawa Y, Nikai H, Tsuru H. Tissue compatibility and stability of a new zirconia ceramic in vivo. J Prosthet Dent 1992;68:322-326. https://doi.org/10.1016/0022-3913(92)90338-B
  8. Scarano A, Di Carlo F, Quaranta M, Piattelli A. Bone response to zirconia ceramic implants: an experimental study in rabbits. J Oral Implantol 2003;29:8-12. https://doi.org/10.1563/1548-1336(2003)029<0008:BRTZCI>2.3.CO;2
  9. Rosenstiel SF, Land MF, Fujimoto J. Contemporary Fixed Prosthodontics. 4th ed. St. Louis; Mosby; 2006. p. 262, 643.
  10. Yu B, Ahn JS, Lee YK. Measurement of translucency of tooth enamel and dentin. Acta Odontol Scand 2009;67:57-64. https://doi.org/10.1080/00016350802577818
  11. Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part I: core materials. J Prosthet Dent 2002; 88:4-9.
  12. Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part II: core and veneer materials. J Prosthet Dent 2002;88:10-15.
  13. Vichi A, Louca C, Corciolani G, Ferrari M. Color related to ceramic and zirconia restorations: a review. Dent Mater 2011; 27:97-108. https://doi.org/10.1016/j.dental.2010.10.018
  14. Brodbelt RH, O'Brien WJ, Fan PL. Translucency of dental porcelains. J Dent Res 1980;59:70-75. https://doi.org/10.1177/00220345800590011101
  15. Peelen JGJ, Metselaar R. Light-scattering by pores in polycrystalline materials: transmission properties of alumina. J Appl Phys 1974;45:216-220. https://doi.org/10.1063/1.1662961
  16. Zhang HB, Kim BN, Morita K, Yoshida H, Lim JH, Hiraga K. Optimization of high-pressure sintering of transparent zirconia with nano-sized grains. J Alloy Compd 2010;508: 196-199. https://doi.org/10.1016/j.jallcom.2010.08.045
  17. Clarke FJ. Measurement of color of human teeth. In: McLean JW, editor. Proceedings of the First International Symposium on Ceramics. Chicago: Quintessence; 1983. p. 441-490.
  18. Casolco SR, Xu J, Garay JE. Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors. Scr Mater 2008;58:516-519. https://doi.org/10.1016/j.scriptamat.2007.11.014
  19. Jiang L, Liao Y, Wan Q, Li W. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J Mater Sci Mater Med 2011;22:2429-2435. https://doi.org/10.1007/s10856-011-4438-9
  20. Anselmi-Tamburini U, Woolman JN, Munir ZA. Transparent nanometric cubic and tetragonal zirconia obtained by highpressure pulsed electric current sintering, Adv Funct Mater 2007;17:3267-3273. https://doi.org/10.1002/adfm.200600959
  21. Yang D, Raj R, Conrad H. Enhanced sintering rate of Zirconia (3Y-TZP) through the effect of a weak dc electric field on grain growth. J Am Ceram Soc 2010;93:2935-2937. https://doi.org/10.1111/j.1551-2916.2010.03905.x
  22. Janney MA, Calhoun CL, Kimrey HD. Microwave sintering of solid oxide fuel cell materials: I, Zirconia-8 mol% Yttria. J Am Ceram Soc 1992;75:341-346. https://doi.org/10.1111/j.1151-2916.1992.tb08184.x
  23. Li JF, Watanabe R. Phase Transformation in $Y_{2}O_{3}$-Partially- Stabilized $ZrO_{2}$Polycrystals of Various Grain Sizes during Low-Temperature Aging in Water. J Am Ceram Soc 1998;81: 2687-2691.
  24. Ebadzadeh T, Valefi M. Microwave-assisted sintering of zircon. J Alloy Compd 2008;448:246-249. https://doi.org/10.1016/j.jallcom.2007.02.032
  25. Cheng J, Agrawal D, Zhang Y, Roy R. Microwave sintering of transparent alumina. Mater Lett 2002;56:587-592. https://doi.org/10.1016/S0167-577X(02)00557-8
  26. Luo J, Adak S, Stevens R. Microstructure evolution and grain growth in the sintering of 3Y-TZP ceramics. J Mater Sci 1998;33:5301-5309. https://doi.org/10.1023/A:1004481813393
  27. ISO 18754 - Fine ceramics-advanced ceramics, advanced technical ceramics-Determination of density and apparent porosity. ISO; Geneva; Switzerland, 2008.
  28. ASTM. Standard test method for determining average grain size E112-96. Part 301 2003:243-266.
  29. Mendelson MI. Average Grain Size in Polycrystalline Ceramics. J Am Ceram Soc 1969;52:443-446. https://doi.org/10.1111/j.1151-2916.1969.tb11975.x
  30. Cook WD, McAree DC. Optical properties of esthetic restorative materials and natural dentition. J Biomed Mater Res 1985;19:469-488. https://doi.org/10.1002/jbm.820190502
  31. Lee YK. Influence of scattering/absorption characteristics on the color of resin composites. Dent Mater 2007;23:124-131 https://doi.org/10.1016/j.dental.2006.01.007
  32. O'Brien WJ, Johnston WM, Fanian F. Double-layer color effects in porcelain systems. J Dent Res 1985;64:940-943. https://doi.org/10.1177/00220345850640061801
  33. Hayashi K, Kobayashi O, Toyoda S, Morinag a K. Transmission optical properties of polycrystalline alumina with submicron grains. Mater Trans JIM 1991;32:1024-1029.
  34. O YT, Koo JB, Hong KJ, Park JS, Shin DC. Effect of grain size on transmittance and mechanical strength of sintered alumina. Mat Sci Eng A 2004;374:191-195. https://doi.org/10.1016/j.msea.2004.02.015
  35. Apetz R, van Bruggen MPB. Transparent alumina: A light scattering model. J Am Ceram Soc 2003;86:480-486. https://doi.org/10.1111/j.1151-2916.2003.tb03325.x
  36. Alaniz JE, Perez-Gutierrez FG, Aguilar G, Garay JE. Optical properties of transparent nanocrystalline yttria stabilized zirconia. Opt Mater 2009;32:62-68. https://doi.org/10.1016/j.optmat.2009.06.004
  37. ISO 13356 - Implants for surgery-Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). ISO; Geneva; Switzerland, 2008.
  38. Tekeli S, Erdogan M. A quantitative assessment of cavities in 3 mol% yttria-stabilized tetragonal zirconia specimens containing various grain size. Ceram Int 2002;28:785-789. https://doi.org/10.1016/S0272-8842(02)00044-5
  39. Hjerppe J, Vallittu PK, Fröberg K, Lassila LV. Effect of sintering time on biaxial strength of zirconium dioxide. Dent Mater 2009;25:166-171. https://doi.org/10.1016/j.dental.2008.05.011

Cited by

  1. Review of Translucency Determinations and Applications to Dental Materials vol.26, pp.4, 2014, https://doi.org/10.1111/jerd.12112
  2. Comparison of the translucency of shaded zirconia all-ceramic systems vol.6, pp.5, 2014, https://doi.org/10.4047/jap.2014.6.5.415
  3. Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials vol.6, pp.6, 2014, https://doi.org/10.4047/jap.2014.6.6.456
  4. Emerging Ceramic-based Materials for Dentistry vol.93, pp.12, 2014, https://doi.org/10.1177/0022034514553627
  5. Comparison of Contrast Ratio, Translucency Parameter, and Flexural Strength of Traditional and “Augmented Translucency” Zirconia for CEREC CAD/CAM System vol.28, pp.14964155, 2015, https://doi.org/10.1111/jerd.12172
  6. Controlling grain size in columnar YSZ coating formation by droplet filtering assisted PS-PVD processing vol.5, pp.124, 2015, https://doi.org/10.1039/C5RA20799A
  7. Fe3O4 stabilized zirconia: structural, mechanical and optical properties vol.74, pp.2, 2015, https://doi.org/10.1007/s10971-014-3415-4
  8. Densification of 8Y-Tetragonal-Stabilized Zirconia Optoceramics with Improved Optical Properties by Y Segregation vol.13, pp.5, 2016, https://doi.org/10.1111/ijac.12568
  9. Comparative radiopacity of conventional and full-contour Y-TZP ceramics vol.35, pp.2, 2016, https://doi.org/10.4012/dmj.2015-194
  10. Evaluation of translucency of monolithic zirconia and framework zirconia materials vol.8, pp.3, 2016, https://doi.org/10.4047/jap.2016.8.3.181
  11. Influence of Restorative Materials on Color of Implant-Supported Single Crowns in Esthetic Zone: A Spectrophotometric Evaluation vol.2017, pp.2314-6141, 2017, https://doi.org/10.1155/2017/5034358
  12. Comparison of the optical properties of pre-colored dental monolithic zirconia ceramics sintered in a conventional furnace versus a microwave oven vol.9, pp.5, 2017, https://doi.org/10.4047/jap.2017.9.5.394
  13. Test of Relative Translucency of 5 All-Ceramic Core Materials vol.591, pp.1662-9795, 2013, https://doi.org/10.4028/www.scientific.net/KEM.591.289
  14. The Translucency of Yttria-Stabilized Zirconia in Dental Crowns: A Review vol.761, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.761.436
  15. Effects of Laser Treatment on the Bond Strength of Differently Sintered Zirconia Ceramics vol.34, pp.7, 2016, https://doi.org/10.1089/pho.2015.4064
  16. The Effect of Sintering Time on the Marginal Fit of Zirconia Copings pp.1059941X, 2019, https://doi.org/10.1111/jopr.12731
  17. Honey mediated microwave assisted sol–gel synthesis of stabilized zirconia nanofibers vol.87, pp.3, 2018, https://doi.org/10.1007/s10971-018-4749-0
  18. Mica glass ceramics for dental restorations pp.1753-5557, 2018, https://doi.org/10.1080/10667857.2018.1494240
  19. Color Aspect of Monolithic Zirconia Restorations: A Review of the Literature pp.1059941X, 2018, https://doi.org/10.1111/jopr.12906
  20. Development of Translucent Zirconia for Dental Crown Applications vol.8, pp.3, 2013, https://doi.org/10.3923/ajsr.2015.342.350
  21. Translucent zirconia in the ceramic scenario for monolithic restorations: A flexural strength and translucency comparison test vol.60, pp.None, 2013, https://doi.org/10.1016/j.jdent.2017.03.002
  22. Speed sintering translucent zirconia for chairside one-visit dental restorations: Optical, mechanical, and wear characteristics vol.43, pp.14, 2013, https://doi.org/10.1016/j.ceramint.2017.05.141
  23. Mechanical and Surface Properties of Monolithic Zirconia vol.43, pp.3, 2013, https://doi.org/10.2341/17-019-l
  24. Structural and Morphological Evaluation of Presintered Zirconia following Different Surface Treatments vol.19, pp.2, 2013, https://doi.org/10.5005/jp-journals-10024-2230
  25. Three-dimensional printing of zirconia: characterization of early stage material properties vol.6, pp.1, 2013, https://doi.org/10.1080/26415275.2019.1640608
  26. Optical properties of translucent zirconia: A review of the literature vol.3, pp.1, 2019, https://doi.org/10.2478/ebtj-2019-0005
  27. The friction and wear properties of RGO/3Y-TZP composites under dry sliding vol.28, pp.None, 2019, https://doi.org/10.1177/2633366x19890626
  28. Monolithic Zirconia: An Update to Current Knowledge. Optical Properties, Wear, and Clinical Performance vol.7, pp.3, 2013, https://doi.org/10.3390/dj7030090
  29. Modeling of the Influence of Chemical Composition, Sintering Temperature, Density, and Thickness in the Light Transmittance of Four Zirconia Dental Prostheses vol.12, pp.16, 2013, https://doi.org/10.3390/ma12162529
  30. Influence of heating rate on the flexural strength of monolithic zirconia vol.11, pp.4, 2013, https://doi.org/10.4047/jap.2019.11.4.202
  31. The influence of altering sintering protocols on the optical and mechanical properties of zirconia: A review vol.31, pp.5, 2013, https://doi.org/10.1111/jerd.12492
  32. Effect of glazing on translucency, color, and surface roughness of monolithic zirconia materials vol.31, pp.5, 2013, https://doi.org/10.1111/jerd.12493
  33. Effect of sintering parameters on the mechanical properties of monolithic zirconia vol.13, pp.4, 2013, https://doi.org/10.15171/joddd.2019.038
  34. Effect of Sintering Conditions on Translucency of High Translucent Zirconia vol.829, pp.None, 2019, https://doi.org/10.4028/www.scientific.net/kem.829.49
  35. Factors affecting the translucency of monolithic zirconia ceramics: A review from materials science perspective vol.39, pp.1, 2013, https://doi.org/10.4012/dmj.2019-098
  36. Influence of CAD/CAM Fabrication and Sintering Procedures on the Fracture Load of Full-Contour Monolithic Zirconia Crowns as a Function of Material Thickness vol.45, pp.2, 2020, https://doi.org/10.2341/19-086-l
  37. Strength and translucency of zirconia after high‐speed sintering vol.32, pp.2, 2013, https://doi.org/10.1111/jerd.12524
  38. Modeling zirconia sintering trajectory for obtaining translucent submicronic ceramics for dental implant applications vol.188, pp.None, 2013, https://doi.org/10.1016/j.actamat.2020.01.061
  39. 지르코니아 세라믹 소결조건이 치과보철물의 적합도에 미치는 영향 vol.42, pp.2, 2013, https://doi.org/10.14347/kadt.2020.42.2.121
  40. 단시간과 장시간의 소결방법에 따른 지르코니아의 굴곡 강도와 미세구조의 변화 vol.42, pp.2, 2013, https://doi.org/10.14347/kadt.2020.42.2.73
  41. Color changes of monolithic zirconia block before and after sintering vol.44, pp.2, 2020, https://doi.org/10.21851/obr.44.02.202006.61
  42. Impact of multiple firings and resin cement type on shear bond strength between zirconia and resin cements vol.12, pp.4, 2013, https://doi.org/10.4047/jap.2020.12.4.197
  43. Do different sintering conditions influence bond strength between the resin cements and a currently used esthetic zirconia? vol.34, pp.16, 2013, https://doi.org/10.1080/01694243.2020.1783773
  44. Dimensional Changes of Yttria‐stabilized Zirconia under Different Preparation Designs and Sintering Protocols vol.29, pp.8, 2013, https://doi.org/10.1111/jopr.13170
  45. Diagnostic accuracy of 870-nm spectral-domain OCT with enhanced depth imaging for the detection of caries beneath ceramics vol.102, pp.None, 2013, https://doi.org/10.1016/j.jdent.2020.103458
  46. Effect of Yttria Content on the Translucency and Masking Ability of Yttria-Stabilized Tetragonal Zirconia Polycrystal vol.13, pp.21, 2013, https://doi.org/10.3390/ma13214726
  47. Effect of shade and sintering temperature on the translucency parameter of a novel multi‐layered monolithic zirconia in different thicknesses vol.32, pp.6, 2013, https://doi.org/10.1111/jerd.12598
  48. Fit of tooth‐supported zirconia single crowns—A systematic review of the literature vol.6, pp.6, 2013, https://doi.org/10.1002/cre2.323
  49. Strength and aging resistance of monolithic zirconia: an update to current knowledge vol.56, pp.1, 2013, https://doi.org/10.1016/j.jdsr.2019.09.002
  50. Mechanical behavior and microstructural characterization of different zirconia polycrystals in different thicknesses vol.13, pp.6, 2013, https://doi.org/10.4047/jap.2021.13.6.385
  51. Effect of Veneering and Hydrothermal Aging on the Translucency of Newly Introduced Extra Translucent and High Translucent Zirconia with Different Thicknesses vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/7011021
  52. Minimal tooth preparation for posterior monolithic ceramic crowns: Effect on the mechanical behavior, reliability and translucency vol.37, pp.3, 2013, https://doi.org/10.1016/j.dental.2020.11.001
  53. Effects of sintering time on translucency and color of translucent zirconia ceramics vol.33, pp.4, 2021, https://doi.org/10.1111/jerd.12723
  54. Adhesion to Zirconia: A Systematic Review of Surface Pretreatments and Resin Cements vol.14, pp.11, 2013, https://doi.org/10.3390/ma14112751
  55. Effect of sintering and aging processes on the mechanical and optical properties of translucent zirconia vol.126, pp.1, 2013, https://doi.org/10.1016/j.prosdent.2021.03.024
  56. Impact of changes in sintering temperatures on characteristics of 4YSZ and 5YSZ vol.120, pp.None, 2013, https://doi.org/10.1016/j.jmbbm.2021.104586
  57. Effect of colourants on the optical characteristics and structure of Y 2 O 3 stabilised tetragonal zirconia ceramic vol.137, pp.5, 2013, https://doi.org/10.1111/cote.12546
  58. Optical properties evaluation of rapid sintered translucent zirconia with two dental colorimeters vol.17, pp.1, 2013, https://doi.org/10.1016/j.jds.2021.05.014