DOI QR코드

DOI QR Code

NORMAL FUZZY PROBABILITY FOR TRAPEZOIDAL FUZZY SETS

  • Kim, Changil (Department of Mathematics Education, Dankook University) ;
  • Yun, Yong Sik (Department of Mathematics and Research Institute for Basic Sciences, Jeju National University)
  • 투고 : 2013.02.28
  • 심사 : 2013.04.02
  • 발행 : 2013.06.01

초록

A fuzzy set A defined on a probability space (${\Omega}$, $\mathfrak{F}$, P) is called a fuzzy event. Zadeh defines the probability of the fuzzy event A using the probability P. We define the normal fuzzy probability on $\mathbb{R}$ using the normal distribution. We calculate the normal fuzzy probability for generalized trapezoidal fuzzy sets and give some examples.

키워드

과제정보

연구 과제 주관 기관 : Jeju National University

참고문헌

  1. Y.S. Yun, J.C. Song and J.W. Park, Normal fuzzy probability for quadratic fuzzy number, Journal of fuzzy logic and intelligent systems, 15(3) (2005), 277-281. https://doi.org/10.5391/JKIIS.2005.15.3.277
  2. Y.S. Yun, J.C. Song and S.U. Ryu, Normal fuzzy probability for trigonometric fuzzy number, Journal of applied mathematics and computing 19(1-2) (2005), 513-520.
  3. B.J. Lee and Y.S. Yun, The generalized trapezoidal fuzzy sets, Journal of the Chungcheong Mathematical Society 24(2) (2011), 253-266
  4. C. Kang and Y.S. Yun, Normal fuzzy probability for generalized triangular fuzzy sets, Journal of fuzzy logic and intelligent systems, 22(2) (2012), 212-217. https://doi.org/10.5391/JKIIS.2012.22.2.212
  5. C.I. Kim and Y.S. Yun, Normal fuzzy probability for generalized quadratic fuzzy sets, Journal of the Chungcheong Mathematical Society 25(2) (2012), 217-225 https://doi.org/10.14403/jcms.2012.25.2.217
  6. L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning - I, Information Sciences 8 (1975), 199-249 https://doi.org/10.1016/0020-0255(75)90036-5
  7. L.A. Zadeh, Probability measures of fuzzy events, J. Math. Anal. Appl. 23 (1968), 421-427 https://doi.org/10.1016/0022-247X(68)90078-4