참고문헌
-
D. Cericola, P. Novk, A. Wokaun, and R. Ktz, 'Hybridization of electrochemical capacitors and rechargeable batteries: An experimental analysis of the different possible approaches utilizing activated carbon,
$Li_4Ti_5O_{12}$ and$LiMn_2O_4$ ' J. Power Sources, 196, 10305 (2011). https://doi.org/10.1016/j.jpowsour.2011.07.032 -
H. Wang, C. Peng, F. Peng, H. Yu, and J. Yang, 'Facile synthesis of
$MnO_2$ /CNT nanocomposite and its electrochemical performance for supercapacitors' Mater. Sci. Eng. B-Adv., 176, 1073 (2011). https://doi.org/10.1016/j.mseb.2011.05.043 - L. Bai, C. Li, A. A. Anani, G. Thomas, H. Wu, K. K. Lian, F. R. Denton and J. N. Howard, U. S. Patent No. 5, 744, 258 (1998).
- K. T. Lee and N. L. Wu, 'Long-term electrochemical behaviors of manganese oxide aqueous electrochemical capacitor under reducing potentials' Electrochim. Acta, 55, 7429 (2010). https://doi.org/10.1016/j.electacta.2010.01.102
- D. Cericola and R. Kotz, 'Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits' Electrochim. Acta, 72, 1 (2012). https://doi.org/10.1016/j.electacta.2012.03.151
- J. W. Lee, J. M. Ko, and J. D. Kim, 'Hydrothermal preparation of nitrogen-doped graphene sheets via hexamethylenetetramine for application as supercapacitor electrodes' Electrochim. Acta, 85, 459 (2012). https://doi.org/10.1016/j.electacta.2012.08.070
- Y. H. Lee, K. H. Chang, and C. C. Hu, 'Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes' J. Power Sources, 227, 300 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.026
- K. S. Kim and S. J. Park, 'Electrochemical performance of graphene/carbon electrode contained well-balanced microand mesopores by activation-free method' Electrochim. Acta, 65, 50 (2012). https://doi.org/10.1016/j.electacta.2012.01.009
- D. Lozano-Castello, D. Cazorla-Amors, A. Linares-Solano, S. Shiraishi, H. Kurihara, and A. Oya, 'Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte' Carbon, 41, 1765 (2003). https://doi.org/10.1016/S0008-6223(03)00141-6
- T. Tsubota, K. Takenaka, N. Murakami, and T. Ohno, 'Performance of nitrogen- and sulfur-containing carbon material derived from thiourea and formaldehyde as electrochemical capacitor' J. Power Sources, 196, 10455 (2011). https://doi.org/10.1016/j.jpowsour.2011.07.025
- W. Zou, X. Yuan, F. Zeng, X. Huang, S. Mo, and D. Yuan, 'N-doped carbon nanowires synthesized from l-arginine for electrochemical application' Mater. Lett., 79, 195 (2012). https://doi.org/10.1016/j.matlet.2012.03.097
- T. Tsubota, Y. Miyauchi, N. Murakami, and T. Ohno, 'Improvement of capacitance value as the electrode of an electrochemical capacitor by mixing starch with guanidine phosphate' J. Power Sources, 196, 5769 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.043
- N. Gavrilov, I. A. Pa ti, M. Vujkovi , J. Travas-Sejdic, G. Ciri -Marjanovi , S. V. Mentus, 'High-performance charge storage by N-containing nanostructured carbon derived from polyaniline' Carbon, 50, 3915 (2012). https://doi.org/10.1016/j.carbon.2012.04.045
- J. Shen, A. Liu, Y. Tu, H. Wang, R. Jiang, J. Ouyang, and Y. Chen, 'Asymmetric deposition of manganese oxide in single walled carbon nanotube films as electrodes for flexible high frequency response electrochemical capacitors' Electrochim. Acta, 78, 122 (2012). https://doi.org/10.1016/j.electacta.2012.05.138