DOI QR코드

DOI QR Code

리튬 이차전지용 양극활물질 Li[Ni0.6Co0.2Mn0.2]O2의 소성 온도가 전기화학적 특성에 미치는 영향

Effects of Calcinations Temperature on the Electrochemical Properties of Li[Ni0.6Co0.2Mn0.2]O2 Lithium-ion Cathode Materials

  • 유기원 (한국교통대학교 나노고분자공학과) ;
  • 전효진 (한국교통대학교 나노고분자공학과) ;
  • 손종태 (한국교통대학교 나노고분자공학과)
  • Yoo, Gi-Won (Department of Nano Polymer Science & Engineering, Korea National University of Transportation) ;
  • Jeon, Hyo-Jin (Department of Nano Polymer Science & Engineering, Korea National University of Transportation) ;
  • Son, Jong-Tae (Department of Nano Polymer Science & Engineering, Korea National University of Transportation)
  • 투고 : 2013.02.13
  • 심사 : 2013.02.25
  • 발행 : 2013.05.31

초록

$Na_2CO_3$와 [M($SO_4$)(M = Ni, Co, Mn)]을 사용함으로써, Carbonate 공침 합성법에 의해 $[Ni_{0.6}Co_{0.2}Mn_{0.2}]CO_3$ 전구체를 합성하였다. 합성된 전구체는 공기분위기에서 $Li_2CO_3$와 혼합하여 각각, 750, 850 그리고 $950^{\circ}C$에서 소성되었고, 이로 인한 $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ 양극활 물질의 소성온도가 미치는 영향을 조사하였다. $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$의 구조와 특성은 X-선 회절 분석(XRD), 시차주사현미경(SEM) 그리고 전기화학적 측정으로 분석되었는데, X-선 회절 결과 $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$는 소성온도가 증가함에 따라서 $I_{(003)}/I_{(104)}$는 증가하고 R-factor 는 감소하였으며, 시차주사현미경 결과에서는 1차 입자의 크기가 증가하는 경향을 보였다. 특히, $950^{\circ}C$에서 24시간 동안 소성된 $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$는 가역 용량이 $165.3mAhg^{-1}$[cut-off voltage 2.5~4.3 V, 0.1 C($17mAhg^{-1}$)] 그리고 50번째 충 방전 사이클 [cut-off voltage 2.5~4.3 V, 1 C($170mAhg^{-1}$)]까지 95.4%의 우수한 용량 보존율을 가지면서 가장 우수한 전기화학적 특성을 보여주었다.

Using $Na_2CO_3$ and $MeSO_4$ (Me = Ni, Co and Mn) as starting materials, the precursor of $[Ni_{0.6}Co_{0.2}Mn_{0.2}]CO_3$ has been synthesized by carbonate co-precipitation. The precursor was mixed with $Li_2CO_3$, and calcined at 750, 850, and$950^{\circ}C$ in air. Effect of calcinations temperature on characteristics of $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ cathode materials was investigated. The structure and characteristics of $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ were determined by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and electrochemical measurements. The X-ray diffraction (XRD) results show that the intensity ratio of $I_{(003)}/I_{(104)}$ increased and the R-factor ratio decreased with the increase of calcinations temperature. And Scanning electron microscopy (SEM) result show that the primary particle size increased. Especially, the $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ calcined at $950^{\circ}C$ for 24 H shows excellent electrochemical performances with reversible specific capacity of $165.3mAhg^{-1}$ [cut-off voltage 2.5~4.3 V, 0.1 C($17mAhg^{-1}$)] and good capacity retention of 95.4% after 50th charge/discharge cycles[cut-off voltage 2.5~4.3 V, 1 C($170mAhg^{-1}$)].

키워드

참고문헌

  1. Q. CaO, H. P. Zhang, G. J. Wang, Q. Xia, and Y. P. Wu, 'A novel carbon-coated $LiCoO_2$ as cathode material for lithium ion battery' Electrochem. Comm., 9, 1228 (2007). https://doi.org/10.1016/j.elecom.2007.01.017
  2. Y. Makimura and T. Ohzuku, 'Secondary Batteries- Lithium Rechargeable Systems-lithium-ion|Positive Electrode: Layered Mixed Metal Oxides' Encyclopedia of Electrochemical Power Sources., 249 (2009).
  3. M. N. Obrovac, O. Mao, andJ. R. Dahn, 'Structure and electrochemistry of $LiMO_2$ (M = Ti, Mn, Fe, Co, Ni) prepared by mechanochemical synthesis' Solid state Ionics., 112, 9 (1998). https://doi.org/10.1016/S0167-2738(98)00225-2
  4. G. Ceder and S. K. Mishra, 'The stability of orthorhombic and monoclinic-layered $LiMnO_{2[J]}$' Electrochem, Solid-State Lett., 2, 550 (1999) https://doi.org/10.1149/1.1390900
  5. L. Y. Yu, W. H. Qiu, F. Lian, W. Liu, X. L. Kang, and J. Y. Huang 'Comparative study of layered 0.65 $Li[Li_{1/3}Mn_{2/3}]O_2{\cdot}0.35LiMO_2$ (M = Co, $Ni_{1/2}Mn_{1/2}$ and $Ni_{1/3}Co_{1/3}Mn_{1/3}$) cathode materials' Materials Letters., 62, 3010 (2008). https://doi.org/10.1016/j.matlet.2008.01.133
  6. Z. G. Li, T. D. Wang, and X. Y. Kang, 'Synthesis and characterization of $LiCo_{1/3}Ni_{1/3}Mn_{1/3}O_2 $ prepared by Pechini process' Rare Metals., 27, 7 (2006).
  7. S. K. Zhong, 'Synthesis and electrochemical performances of $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ cathode materials' Trans. Nonferrous Met. Soc. China, 19, 1499 (2009). https://doi.org/10.1016/S1003-6326(09)60059-5
  8. K. H. Dai, Y. T. Xie, Y. J. Wang, Z. S. Song, and Qilu, 'Effect of fluorine in the preparation of $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})$ $O_2$ via hydroxide co-precipitation' Electrochimica Acta., 53, 3257 (2008). https://doi.org/10.1016/j.electacta.2007.10.017
  9. K. Yin, W. Fang, B. Zhang, and X. Guo, 'The effects of precipitant agent on structure and performance of $LiNi_{1/3}Co_{1/3}Mn_{1/3}$ $O_2$ cathode material via a carbonate co-precipitation method' Electrochimica Acta., 85, 99 (2012). https://doi.org/10.1016/j.electacta.2012.06.064
  10. T. H. Cho, S. M. Park, Yoshio, T. Hirai, and Y. Hideshima, 'Effect of synthesis condition on the structural and electrochemical properties of $Li[Ni_{1/3}Mn_{1/3}Co_{1/3}]$ $O_2$ prepared by carbonate co-precipitation method' J. Power Sources., 442, 306 (2005).
  11. W. Li, J. N. Reimers, and J. R. Dahn, 'In situ x-ray diffraction and electrochemical studies of $Li_{1x}NiO_2$' Solid State Ionics., 67, 123 (1993). https://doi.org/10.1016/0167-2738(93)90317-V
  12. K. K . Cheralathan, N. Y. Kang, H. S. Park, Y. J. Lee, W. C. Choi, Y. S. Ko, and Y. K. Park, 'Preparation of spherical $LiNi_{0.80}Co_{0.15}Mn_{0.05}O_2$ lithium-ion cathode material by continuous co-precipitation' J. Power Sources., 195, 1486 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.101
  13. J. N. Reimers, E. Rossen, C. C. Jones, and J. R. Dahn, 'Structure and electrochemistry of $LixFeyNi_{1-y}O_2$' Solid State Ionics, 61, 335 (1993). https://doi.org/10.1016/0167-2738(93)90401-N

피인용 문헌

  1. Effect of Calcination Temperatures on the Structure and Electrochemical Characterization of Li(Ni0.5Mn0.3Co0.2)O2as Cathode Material by Supercritical Hydrothermal Synthesis Method vol.16, pp.3, 2013, https://doi.org/10.5229/JKES.2013.16.3.151
  2. The Structural Stability and Electrochemical Properties of Fe Doped Li[Ni0.575Co0.1Mn0.325]O2 vol.17, pp.3, 2014, https://doi.org/10.5229/JKES.2014.17.3.149
  3. Optimization of the synthesis of Low-cobalt Li[Ni0.6Co0.1Mn0.3]O2 for use as cathode materials for lithium-ion batteries vol.66, pp.1, 2015, https://doi.org/10.3938/jkps.66.70