DOI QR코드

DOI QR Code

Characteristics of School Science Inquiry Based on the Case Analyses of High School Science Classes

고등학교 과학수업 사례 분석을 통한 학교 과학 탐구의 특징

  • Received : 2012.11.19
  • Accepted : 2013.04.16
  • Published : 2013.04.30

Abstract

This study aims to explore how to characterize high school science inquiry. For this research, data were collected from fifteen science classes (18 hours), through observation and videotaping, interviews with a few students and their teacher, and documents such as lesson plan or activity sheet in 13 Science Core High Schools. All the data were transcribed and analyzed. Analyses of these transcripts were proceeded in three steps: first, classroom cases showing active interactions between teacher-students and among students were selected; second, according to cognitive process of inquiry (Chinn & Malhotra, 2002), each segment was analyzed and interpreted; lastly, distinctive cases were determined to show essential features of school science inquiry. Based on the analyses, we characterize high school science inquiry in terms of features of variables controlling-device improvement, design studies, evidence-explanation transformation, and reasoning to formulate explanations from evidence. Teachers' role and educational support were discussed as well as the practical characters or features of school science inquiry.

본 연구는 학교 과학 탐구의 특징이 어떠한지 탐색하는 것을 목표로 하였다. 연구를 위하여, 연구진은 13개의 과학중점학교에서 운영하는 다양한 유형의 일상적 과학수업을 참관하고 녹화하였다. 연구 자료는 총 15개 수업(18차시)에 해당하는 수업 관찰 및 녹화, 교사 및 학생과 면담, 수업 지도안 및 학생 활동지 등의 문서자료로 수집되었다. 수업 녹화물과 면담 녹음자료는 즉시 전사하여 분석에 사용되었다. 자료 분석은 3단계로 이루어졌다. 1단계에서는 전체 수업 중에서 교사-학생, 학생들 간의 상호작용이 활발한 수업을 선정했다. 2단계에서는 선정된 수업의 담화를 주제의 흐름에 따라 단편으로 나눈 후 '탐구의 인지적과정' (Chinn & Malhotra, 2002)을 준거로 하여 세부적으로 분석 및 해석했다. 3단계에서는 담화의 연속선상에서 일관되게 나타나는 탐구의 특징을 조명하였다. 연구 결과는 과학적 탐구의 특징으로서, '변인조절-실험장치 개선', '실험 계획 과정(변인탐색-절차계획-변인통제-측정계획)', '(관찰)증거-설명 변환 과정', ' 증거-설명 연결의 추론 과정'이 반영된 4개 수업 사례로 제시되었다. 연구 결과를 토대로 학교과학 탐구 실제에 대한 교육적 의미가 논의되었다.

Keywords

References

  1. 이선경, 이선경, 김찬종, 김희백 (2005). 비형식적 과학 학습 자료의 시나리오 및 논증 구조: 영국 자연사박물관의 공룡관의 사례 연구. 한국과학교육학회지, 25(7),849-866
  2. Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., Niaz, M., Treagust, D., & Tuan, H.-L. (2004). Inquiry in Science Education: international Perspectives. Science Education, 88(3), 397-419. https://doi.org/10.1002/sce.10118
  3. Chinn, C. A. & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: a theoretical framework for evaluating inquiry tasks. Science Education, 86, 175-218. https://doi.org/10.1002/sce.10001
  4. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classroom. Science Education, 84, 287-312. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  5. Duschl, R. A. & Grandy, R. (2012). Two views about explicitly teaching nature of science. Science & Education, published online: 06 October.
  6. Garcia-Mila, M. & Anderson, C. (2008). Cognitive foundations of learning argumentation. In S. Erduran & M. P. Jimenez-Aleixandre (eds.), Argumentation in science education (pp. 29-45). Springer
  7. Giere, R. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago Press
  8. Grandy, R. & Duschl, R. A. (2007). Reconsidering the character and role of inquiry in school science: analysis of a conference. Science & Education, 16, 141-166. https://doi.org/10.1007/s11191-005-2865-z
  9. Jimenez-Aleixandre, M. P. & Erduran, S. (2008). Argumentation in science education: an overview. In M. P. Jimenez-Aleixandre & S. Erduran (eds.), Argumentation in science education: perspectives from classroom-based research (pp. 3-27). Springer.
  10. Kuhn, D. & Franklin, S. (2006). The second decade: What develops (and how)? In W. Damon & R. M. Lerner (Seried Eds.), D. Kuhn & R. Siegler (Vol. Eds.), Handbook of child psychology: Vol. 2, Cognition, perception, and language (6th ed., pp. 953-993). Hoboken, NJ: Wiley.
  11. McNeil, K. L. (2011). Elementary students'views of explanation, argumentation, and evidence and their abilities to construct arguments over the school year. Journal of Research in Science Teaching, 48(7), 793-823. https://doi.org/10.1002/tea.20430
  12. Millar, R. (1998). Rhetoric and reality: what practical work in science education is really for. In J. Wellington (ed.), Practical work in science education: which way now? (pp. 16-31). London: Routledge.
  13. Moshman, D. (1998). Cognitive development beyond childhood. In D. Kuhn & R. Siegler (Eds.), Handbook of child psychology: Vol. 2, Cognition, perception, and language (5th ed., pp. 947-978). New York: Wiley.
  14. National Research Council (1996). National science education standards. Washington, D.C.: National Academy Press
  15. National Research Council (2000). Inquiry and the national science education standards: a guide for teaching and learning. Washington, D.C.: National Academy Press.
  16. Nersessian, N. (2002). The cognitive basis of modelbased reasoning in science. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The cognitive basis of science (pp. 133 153). Cambridge: Cambridge University Press.
  17. Norris, S. & Phillips, L. (2005). 'Reading as inquiry', NSF inquiry conference proceedings. http://www.ruf.rice.edu /rgrandy/NSFConSched.html.
  18. Sampson, V., Grooms, J., & Walker, J. P. (2011). Argument-driven inquiry as a way to help students learn how to participate in scientific argumentation and craft written arguments: an exploratory study. Science Education, 95, 217- 257. https://doi.org/10.1002/sce.20421
  19. Siegel, H. (1989). The rationality of science, critical thinking and science education. Syntheses, 80(1), 9-42. https://doi.org/10.1007/BF00869946
  20. White, R. & Gunstone, R. (1992). Probing understanding. London, UK: Falmer Press.
  21. Zimmerman, C. (2000). The development of scientific reasoning skills. Developmental Review, 20, 99-149. https://doi.org/10.1006/drev.1999.0497

Cited by

  1. Korean Students' Perceptions of Scientific Practices and Understanding of Nature of Science vol.36, pp.16, 2014, https://doi.org/10.1080/09500693.2014.928834
  2. Characteristics of Student Inquiry Found in Project-based Science Practices: Focusing on Theory-Evidence-Method Coordinations and Skills in Using Tools vol.35, pp.4, 2015, https://doi.org/10.14697/jkase.2015.35.4.0599
  3. Analysis of the Characteristics of High School Student Research Activities - Focused on the Prize-Winning Works in the Life Science Field of National Science Fair - vol.46, pp.3, 2018, https://doi.org/10.15717/bioedu.2018.46.3.380
  4. Participation patterns of elementary students in scientific problem finding activities vol.5, pp.1, 2013, https://doi.org/10.1186/s41029-019-0039-6
  5. 시민과학 활동에 참여한 초등학생들의 과학 관련 정의적 특성 및 측정에 대한 인식 분석 vol.39, pp.2, 2013, https://doi.org/10.15267/keses.2020.39.2.168