DOI QR코드

DOI QR Code

Estimation of Wind Resistance Capacity of Nielsen Arch Bridge Based on Measured Data From Monitoring System

모니터링 시스템의 계측자료를 기반으로 한 닐슨아치 교량의 내풍 안정성 평가

  • 이덕근 (서울시립대학교 토목공학과) ;
  • 임성순 (서울시립대학교 토목공학과)
  • Received : 2013.02.16
  • Accepted : 2013.04.01
  • Published : 2013.05.30

Abstract

The wind resistant capacity of bridges with a span of less than 200m is typically evaluated by Wind Resistant Design Manual for Highway Bridges in Japan. Also, the first vertical frequency plays an important role in the evaluation of their aerodynamic performance. An unexpected vortex-induced vibration of Nielsen arch bridge with span of 183m designed by this manual has been measured by monitoring system during typhoon. The amplitude of vibrations was about 2 times than the allowable vibration displacement. This paper presents the feature of vortex-induced vibration of this Nielsen arch bridge based on measured wind velocity, wind direction, and responses at midspan of main girder. From the result of FFT, the $1^{st}$ mode shape of the bridge is antisymmetric and the $2^{nd}$ is symmetric. Also, the dominant vibration of the bridge is the $2^{nd}$ vertical mode. According to these results, the $2^{nd}$ vertical vibration mode of this Nielsen arch bridge is prior to the first for the estimation of wind resistance capacity.

200m 이하의 아치 교량에서 동적 내풍 안정성은 일반적으로 일본의 Wind Resistant Design Manual for Highway Bridges에 따라 검토된다. 또한 내풍 안정성 검토는 모드 형상에 관계없이 1차 연직 진동수를 적용한다. 일본의 매뉴얼에 따라 설계된 경간장 183m의 닐슨 아치 교량에서 예상치 못한 와류 진동이 발생하였으며 이는 태풍시 교량의 모니터링 시스템에 의해 계측되었다. 본 논문에서는 태풍 발생시에 계측된 풍속, 풍향, 진동 변위와 가속도를 기반으로 닐슨 아치교량의 와류진동 특성을 분석하였다. 분석 결과 1차 연직 진동 모드가 역대칭 형상이고 2차 연직 진동 모드가 대칭 형상인 닐슨 아치교의 경우 와류 진동이 2차 연직 모드에서 지배적이다. 따라서 본 논문에서는 2차 연직 진동 모드가 대칭 형상인 닐슨 아치교의 내풍 안정성 평가시에는 1차 보다 2차 연직 진동 모드가 중요한 설계 요소임을 제시하였다.

Keywords

References

  1. Japan Road Association, Wind Resistant Design Manual for Highway Bridges, 2008, pp.59-240. (in Japanese)
  2. Jeollanam-do, Structural Re-Design of Bridge between Yeocheon and Hwayang (I), Jeollanam-do, 2002, pp.382-385. (in Korean)
  3. John, H. and G. Macdonald, "Evaluation of buffeting predictions of a cable-stayed bridge from full-scale measurements", Journal of Wind Engineering and Industrial Aerodynamics, vol. 91, No. 12-15, 2003, pp.1465-1483. https://doi.org/10.1016/j.jweia.2003.09.009
  4. Kim, S. H., Wind Analysis of Cable-Stayed Bridge Considering Aerodynamic Admittance Function, Ph.D. diss., Univ. of Seoul, Dept. of Civil Eng, 2010. (in Korean)
  5. Kong, M. S., H. Ka, S. H. Son and S. S. Yhim, "Damage Detection in Cable-Stayed Bridges Using Vibration Modes", Journal of KSMI, vol. 10, No. 6, pp.113-123. (in Korean)
  6. KRTA, Highway Bridge Design Standards, 2010, pp.1.1-1.4, 2.1-2.42, and pp.3.1-3.140. (in Korean)
  7. KSCE, Guidelines for cable-steel bridges, 2006, pp.67-82. (in Korean)
  8. Lee, B. K., S. J. Oh and J. S. Suh, "Planar Free Vibration of Catenary Arcs", Journal of KSCE, vol. 10, No. 3, 1990, pp.19-28. (in Korean)
  9. Wang, Hao, L. A. Qun, G. Tong and X. Jing, "Field Measurement on Wind Characteristic and Buffeting Response of the Runyang Suspension Bridge during Typhoon Matsa", Science in China Series E: Technological Sciences, vol. 52, No. 5, 2009, pp.1354-1362. https://doi.org/10.1007/s11431-008-0238-y
  10. Xu, Y. L. and L. D. Zhu, "Buffeting response of long-span cable-supported bridges under skew winds. Prat 2: case study", Journal of Sound and Vibration, vol. 281, No. 3-5, 2005, pp.675-697. https://doi.org/10.1016/j.jsv.2004.01.025
  11. Yhim, S. S., M. S. Kong and Y. S. Yoo, "Dynamic Analysis of Long-span Arch Bridge by Fracturing Hangers", Journal of KSMI, vol. 14. No. 2, pp.113-120. (in Korean)

Cited by

  1. Wireless Ultrasonic Anemometer and Anemoscope Data-Logger System based on the Web vol.39, pp.2, 2015, https://doi.org/10.5916/jkosme.2015.39.2.166
  2. Implementation of Ultrasonic Anemometer & Anemoscope Data-Logger System vol.39C, pp.2, 2014, https://doi.org/10.7840/kics.2014.39C.2.184