DOI QR코드

DOI QR Code

CO2 레이저 열분해법을 이용한 실리콘 나노입자 합성 시 H2 유량이 나노입자 특성에 미치는 영향

Characteristics of Silicon Nanoparticles Depending on H2 Gas Flow During Nanoparticle Synthesis via CO2 Laser Pyrolysis

  • 이재희 (한국에너지기술연구원 차세대전지원천기술센터) ;
  • 김성범 (한국에너지기술연구원 차세대전지원천기술센터) ;
  • 김종복 (한국에너지기술연구원 차세대전지원천기술센터) ;
  • 황택성 (충남대학교 화학공학과) ;
  • 이정철 (한국에너지기술연구원 차세대전지원천기술센터)
  • Lee, Jae Hee (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER)) ;
  • Kim, Seongbeom (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER)) ;
  • Kim, Jongbok (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER)) ;
  • Hwang, Taekseong (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Jeong Chul (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER))
  • 투고 : 2013.03.19
  • 심사 : 2013.04.16
  • 발행 : 2013.05.27

초록

Silicon nanoparticle is a promising material for electronic devices, photovoltaics, and biological applications. Here, we synthesize silicon nanoparticles via $CO_2$ laser pyrolysis and study the hydrogen flow effects on the characteristics of silicon nanoparticles using high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and UV-Vis-NIR spectrophotometry. In $CO_2$ laser pyrolysis, used to synthesize the silicon nanoparticles, the wavelength of the $CO_2$ laser matches the absorption cross section of silane. Silane absorbs the $CO_2$ laser energy at a wavelength of $10.6{\mu}m$. Therefore, the laser excites silane, dissociating it to Si radical. Finally, nucleation and growth of the Si radicals generates various silicon nanoparticle. In addition, researchers can introduce hydrogen gas into silane to control the characteristics of silicon nanoparticles. Changing the hydrogen flow rate affects the nanoparticle size and crystallinity of silicon nanoparticles. Specifically, a high hydrogen flow rate produces small silicon nanoparticles and induces low crystallinity. We attribute these characteristics to the low density of the Si precursor, high hydrogen passivation probability on the surface of the silicon nanoparticles, and low reaction temperature during the synthesis.

키워드

참고문헌

  1. A. Gupta, M. T. Swihart, Adv. Funct. Mater., 19, 696 (2009). https://doi.org/10.1002/adfm.200801548
  2. K. Y. Cheng, R. Anthony, U. R. Kortshagen and R. J. Holmes, Nano Lett., 11, 1952 (2011). https://doi.org/10.1021/nl2001692
  3. C. Y. Liu, Z. C. Holman and U. R. Kortshagen, Adv. Funct. Mater., 20, 2157 (2010). https://doi.org/10.1002/adfm.200902471
  4. J. H. Park, L. Gu, G. V. Maltzahn, E. Ruoslahti, S. N. Bhatia and M. J. Sailor, Nat. Mater., 8, 331 (2009). https://doi.org/10.1038/nmat2398
  5. E. Gaffet and M. Harmelin, J. Less-Common Met., 157, 201 (1990). https://doi.org/10.1016/0022-5088(90)90176-K
  6. R. A. Bley and S. M. Kauzlarich, J. Am. Chem. Soc., 118, 12461 (1996). https://doi.org/10.1021/ja962787s
  7. Z. C. Holman and U. R. Kortshagen, Nanotechnology, 21, 335302 (2010). https://doi.org/10.1088/0957-4484/21/33/335302
  8. L. Mangolini, E. Thimsen and U. Kortshagen, Nano Lett., 5, 655 (2005). https://doi.org/10.1021/nl050066y
  9. M. R. Scriba, D. T. Britton, C. Arendse, M. J. van Staden and M. Harting, Thin Solid Films, 517, 3484 (2009). https://doi.org/10.1016/j.tsf.2009.01.047
  10. X. Li, Y. He and M. T. Swihart, Langmuir, 20, 4720 (2004). https://doi.org/10.1021/la036219j
  11. F. Huisken, G. Ledoux, O. Guillois and C. Reynaud, Adv. Mater., 14, 1861 (2002). https://doi.org/10.1002/adma.200290021
  12. X. Li, Y. He, S. S. Talukdar and M. T. Swihart, Langmuir, 19, 8490 (2003). https://doi.org/10.1021/la034487b
  13. P. H. Hermans and A. Weidinger, Macromol. Chem. Phys., 44, 24 (1961). https://doi.org/10.1002/macp.1961.020440103
  14. J. Flint and J. Haggerty, Aerosol Sci. Tech., 13, 72 (1990). https://doi.org/10.1080/02786829008959425
  15. S. Ogut, J. R. Chelikowsky and S. G. Louie, Phys. Rev. Lett., 79, 1770 (1997). https://doi.org/10.1103/PhysRevLett.79.1770