DOI QR코드

DOI QR Code

Influence of Carbonization Conditions in Hydrogen Poor Ambient Conditions on the Growth of 3C-SiC Thin Films by Chemical Vapor Deposition with a Single-Source Precursor of Hexamethyldisilane

  • Received : 2013.04.02
  • Accepted : 2013.05.17
  • Published : 2013.05.31

Abstract

This paper describes the characteristics of cubic silicon carbide (3C-SiC) films grown on a carbonized Si(100) substrate, using hexamethyldisilane (HMDS, $Si_2(CH_3)_6$) as a safe organosilane single precursor in a nonflammable $H_2$/Ar ($H_2$ in Ar) mixture carrier gas by atmospheric pressure chemical vapor deposition (APCVD) at $1280^{\circ}C$. The growth process was performed under various conditions to determine the optimized growth and carbonization condition. Under the optimized condition, grown film has a single crystalline 3C-SiC with well crystallinity, small voids, low residual stress, low carrier concentration, and low RMS. Therefore, the 3C-SiC film on the carbonized Si (100) substrate is suitable to power device and MEMS fields.

Keywords

References

  1. J. B. Casady and R. W. Johnson, "Status of silicon carbide as a wide-bandgap semiconductor for hightemperature applications: A review", Solid State Electron., Vol. 39, pp. 1409-1422, 1996. https://doi.org/10.1016/0038-1101(96)00045-7
  2. A. Elasser, "Silicon carbide benefits and advantages for power electronics circuits and systems", Proc. IEEE, Vol. 90, pp. 969-986, 2002. https://doi.org/10.1109/JPROC.2002.1021562
  3. M. Mehregany, C. A. Zorman, S. Roy, A. J. Fleischman, C. H. Wu, and N. Rajan, "Silicon carbide for microelectromechanical systems", Inter. Mater. Rev., Vol. 45, pp. 85-108, 2000. https://doi.org/10.1179/095066000101528322
  4. M. Bhatnagar and B. J. Baliga, "Comparison of 6HSiC, 3C-SiC, and Si for power devices", IEEE Trans. Electron Dev., Vol. 40, pp. 645-655, 1993. https://doi.org/10.1109/16.199372
  5. A. R. Hefner, R. Singh, J. S. Lai, D. W. Berning, S. Bouche, and C. Chapuy, "High-power modular multilevel converters with SiC JFETs", IEEE Trans. Power Electron., Vol. 16, pp. 273-280, 2010.
  6. H. Okumura, "Present status and future prospect of widegap semiconductor high-power devices", Jpn. J. Appl. Phys., Vol. 45, pp. 7565-7586, 2006. https://doi.org/10.1143/JJAP.45.7565
  7. S. Nishino, J. A. Powell, and H. A. Will, "Production of large-area single-crystal wafers of cubic SiC for semiconductor devices", Appl. Phys. Lett., Vol. 42, pp. 460-463, 1982.
  8. N. Kubo, T. Kawase, S. Asahina, N. Kanayama, H. Tsuda, A. Moritani, and K. Kitahara, "Growth of SiC films using tetraethylsilane", Mater. Sci. Forum, pp. 269-273, 2004.
  9. K. Takahashi, S. Nishino, and J. Saraie, "Lowtemperature growth of 3C-SiC on Si substrate by chemical vapor deposition using hexamethyldisilane as a source material", J. Electrochem. Soc., Vol. 139, pp. 3565-3571, 1992. https://doi.org/10.1149/1.2069122
  10. N. Nordell, S. Nishino, J. W. Yang, C. Jacob, and P. Pirouz, "Growth of SiC using hexamethyldisilane in a hydrogen-poor ambient", Appl. Phys. Lett., Vol. 64, pp. 1647-1649, 1994. https://doi.org/10.1063/1.111819
  11. C. H. Wu, C. Jacob, X. J. Ning, S. Nishino, and P. Pirouz, "Epitaxial growth of 3C SiC on Si(111) from hexamethyldisilane", J. Cryst. Growth, Vol. 158, pp. 480-490, 1996. https://doi.org/10.1016/0022-0248(95)00464-5
  12. A. J. Steckl and J. P. Li, "Uniform $\beta$-SiC thin-film growth on Si by low pressure rapid thermal chemical vapor deposition", IEEE Trans. Electron Dev., Vol. 39, pp. 64-66, 1992. https://doi.org/10.1109/16.108213
  13. N. Kubo, T. Kawase, S. Asahina, N. Kanayama, H. Tsuda, A. Moritani, and K. Kitahara, "Epitaxial growth of 3C-SiC on Si(111) using hexamethyldisilane and tetraethylsilane", Jpn. J. App. Phys., Vol. 43, pp. 7654-7660, 2004. https://doi.org/10.1143/JJAP.43.7654
  14. R. J. Iwanowski, K. Fronc, W. Paszkowicz, and M. Heinonen, "XPS and XRD study of crystalline 3CSiC grown by sublimation method", J. Allowys Compd., Vol. 286, pp. 143-147, 1999. https://doi.org/10.1016/S0925-8388(98)00994-3
  15. G. Ferro, J. Camassel, S. Juillaguet, C. Balloud,E. K. Polychroniadis, Y. Stoemenos, J. Dazord, H. Peyre,Y. Monteil, S. A. Rushworth, and L. M. Smith, "Hexamethyldisilane/propane versus silane/propane precursors: application to the growth of high-quality 3C-SiC on Si", Semicond. Sci. Tech., Vol. 18, p. 1015, 2003. https://doi.org/10.1088/0268-1242/18/12/303
  16. W. L. Zhu, J. L. Zhu, S. Nishino, and G. Pezzotti, "Spatially resolved Raman spectroscopy evaluation of residual stresses in 3C-SiC layer deposited on Si substrates with different crystallographic orientations", Appl. Surf. Sci., Vol. 252, pp. 2346-2354, 2006. https://doi.org/10.1016/j.apsusc.2005.04.020
  17. A. Severino, C. Frewin, C. Bongiorno, R. Anzalone, S. E. Saddow, and F. La Via, "Structural defects in (100) 3C-SiC heteroepitaxy: Influence of the buffer layer morphology on generation and propagation of stacking faults and micro twins", Diam. Relat. Mater., Vol. 18, pp. 1440-1449, 2009. https://doi.org/10.1016/j.diamond.2009.09.012
  18. J. H. Boo, S. B. Lee, K. S. Yu, M. M. Sung, and Y. Kim, "Grwoth of $TiO_2$ thin films on Si(100) substrates using single molecular presursors by metal organic chemical capor deposition", Surf. Coat. Tech., Vol. 131, pp. 88-92, 2000. https://doi.org/10.1016/S0257-8972(00)00765-9
  19. C. D. Stinespring and J. C. Wormhout, "Surface studies relevant to silicon carbide chemical vapor deposition", J. Appl. Phys., Vol. 65, pp. 1733-1742, 1989. https://doi.org/10.1063/1.342947