DOI QR코드

DOI QR Code

나노튜브/화학연료의 동축 구조에서 생성되는 열동력 파도를 이용한 전기 에너지 생성

Thermopower Wave in Core-Shell Structures of Carbon Nanotube Chemical Fuels

  • Choi, Wonjoon (School of Mechanical Engineering, Korea Univ.) ;
  • Strano, Michael S. (Department of Chemical Engineering, Massachusetts Institute of Technology)
  • 투고 : 2013.01.10
  • 심사 : 2013.03.18
  • 발행 : 2013.06.01

초록

이전 연구에서 우리는 나노구조와 화학연료의 동축 구조를 제작하여 이를 점화시켰을 때, 축방향으로 매우 빠르게 화학 반응이 전파되며, 이와 동시에 높은 비출력을 가지는 화학-전기 에너지를 생성할 수 있음을 증명하였으며, 이러한 현상을 열동력 파도로 명명하였다. 본 연구에서는 열동력 파도와 관련된 여러가지 물리적인 현상을 심도있게 다루려 한다. 나노구조의 다른 배열 상태에 따라 반응 전파속도, 에너지 생성 정도가 어떻게 달라지는지, 그리고 이와 동시에 발생하는 전기 신호와는 어떤 연관 관계가 있는 지를 연구하였다. 또한 이론적으로 온도 변화에 따라 달라지는 나노튜브와 화학연료의 성질, 대류와 복사에 의한 영향을 고려했을 때 열동력 파도의 전파 양상이 어떻게 달라지는 지를 규명하였다.

There is considerable interest in developing energy sources capable of larger power densities. In our previous works, we proved that by coupling an exothermic chemical reaction with 1D nanostructures, a self-propagating reactive wave can be driven along its length with a concomitant electrical pulse of high specific power, which we identified as a thermopower wave. Herein, we discuss details about many different aspects of a thermopower wave. Different alignment degree in vertically aligned CNT films is evaluated in the reactive wave speed and correlated with its thermal reaction that affects the change in the magnitude of energy generation. The effects of the temperature-dependent properties of chemical fuels and CNTs are evaluated. Furthermore, we explore the convection and radiation portions in this thermal wave as well as the synchronization between the thermal reaction transfer and the oscillation of the electrical signal.

키워드

참고문헌

  1. Dresselhaus, M. S. and Avouris, P., 2001, "Introduction to Carbon Materials Research," Top Appl Phys Vol. 80, No., pp. 1-9. https://doi.org/10.1007/3-540-39947-X_1
  2. Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F. and Thio, T., 1996, "Electrical Conductivity of Individual Carbon Nanotubes," Nature Vol. 382, No. 6586, pp. 54-56. https://doi.org/10.1038/382054a0
  3. Ando, Y., Zhao, X., Shimoyama, H., Sakai, G. and Kaneto, K., 1999, "Physical Properties of Multiwalled Carbon Nanotubes," Int J Inorg Mater Vol. 1, No. 1, pp. 77-82. https://doi.org/10.1016/S1463-0176(99)00012-5
  4. Yu, C. H., Shi, L., Yao, Z., Li, D. Y. and Majumdar, A., 2005, "Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube," Nano Lett Vol. 5, No. 9, pp. 1842-1846. https://doi.org/10.1021/nl051044e
  5. Adu, C. K. W., Sumanasekera, G. U., Pradhan, B. K., Romero, H. E. and Eklund, P. C., 2001, "Carbon Nanotubes: A Thermoelectric Nano-Nose," Chem Phys Lett Vol. 337, No. 1-3, pp. 31-35. https://doi.org/10.1016/S0009-2614(01)00159-2
  6. Sumanasekera, G. U., Pradhan, B. K., Romero, H. E., Adu, K. W. and Eklund, P. C., 2002, "Giant Thermopower Effects from Molecular Physisorption on Carbon Nanotubes," Phys Rev Lett Vol. 89, No. 16, p. 166801. https://doi.org/10.1103/PhysRevLett.89.166801
  7. Chang, C. W., Okawa, D., Majumdar, A. and Zettl, A., 2006, "Solid-State Thermal Rectifier," Science Vol. 314, No. 5802, pp. 1121-1124. https://doi.org/10.1126/science.1132898
  8. Chang, C. W., Okawa, D., Garcia, H., Majumdar, A. and Zettl, A., 2007, "Nanotube Phonon Waveguide," Phys Rev Lett Vol. 99, No. 4, p. 045901. https://doi.org/10.1103/PhysRevLett.99.045901
  9. Kim, P., Shi, L., Majumdar, A. and McEuen, P. L., 2001, "Thermal Transport Measurements of Individual Multiwalled Nanotubes," Phys Rev Lett Vol. 8721, No. 21, p. 215502.
  10. Takashiri, M., Takiishi, M., Tanaka, S., Miyazaki, K. and Tsukamoto, H., 2007, "Thermoelectric Properties of n-Type Nanocrystalline Bismuth-Telluride-Based Thin Films Deposited by Flash Evaporation," J Appl Phys Vol. 101, No. 7, p. 074301. https://doi.org/10.1063/1.2717867
  11. Zhao, X. B., Ji, X. H., Zhang, Y. H., Zhu, T. J., Tu, J. P. and Zhang, X. B., 2005, "Bismuth Telluride Nanotubes and the Effects on the Thermoelectric Properties of Nanotube-Containing Nanocomposites," Appl Phys Lett Vol. 86, No. 6, p. 062111. https://doi.org/10.1063/1.1863440
  12. Li, L., Yang, Y. W., Huang, X. H., Li, G. H., Ang, R. and Zhang, L. D., 2006, "Fabrication and Electronic Transport Properties of Bi Nanotube Arrays," Appl Phys Lett Vol. 88, No. 10, p. 103119. https://doi.org/10.1063/1.2184990
  13. Boukai, A. I., Bunimovich, Y., Tahir-Kheli, J., Yu, J. K., Goddard, W. A. and Heath, J. R., 2008, "Silicon Nanowires as Efficient Thermoelectric Materials," Nature Vol. 451, No. 7175, pp. 168-171. https://doi.org/10.1038/nature06458
  14. Venkatasubramanian, R., Siivola, E., Colpitts, T. and O'Quinn, B., 2001, "Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit," Nature Vol. 413, No. 6856, pp. 597-602. https://doi.org/10.1038/35098012
  15. Choi, W., Hong, S., Abrahamson, J. T., Han, J. H., Song, C., Nair, N., Baik, S. and Strano, M. S., 2010, "Chemically Driven Carbon-Nanotube-Guided Thermopower Waves," Nat Mater Vol. 9, No. 5, pp. 423-429. https://doi.org/10.1038/nmat2714
  16. Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M. and Iijima, S., 2004, "Water-Assisted Highly Efficient Synthesis of Impurity-Free Single- Waited Carbon Nanotubes," Science Vol. 306, No. 5700, pp. 1362-1364. https://doi.org/10.1126/science.1104962
  17. Parr, T. and Hanson-Parr, D., 1998, "RDX Ignition Flame Structure," Twenty-Seventh Symposium (International) on Combustion, Vols 1 and 2 Vol., No., pp. 2301-2308.
  18. Oyumi, Y., 1988, "Melt phase Decomposition of RDX and Two Nitrosamine Derivatives," Propell. Explos. Pyrot. Vol. 13, No., pp. 42-47. https://doi.org/10.1002/prep.19880130203
  19. Liau, Y. C., Kim, E. S. and Yang, V., 2001, "A Comprehensive Analysis of Laser-Induced Ignition of RDX Monopropellant," Combust. Flame Vol. 126, No. 3, pp. 1680-1698. https://doi.org/10.1016/S0010-2180(01)00281-4
  20. Volkov, E. N., Paletsky, A. A. and Korobeinichev, O. P., 2008, "RDX Flame Structure at Atmospheric Pressure," Combust. Explo. Shock. Vol. 44, No. 1, pp. 43-54. https://doi.org/10.1007/s10573-008-0007-z
  21. Richard E. Sonntag, G. J. V. w., 1991, Introduction to Thermodynamics: Classical and Statistical. 3rd ed ed., John Wiley & Sons:.
  22. Begtrup, G. E., Ray, K. G., Kessler, B. M., Yuzvinsky, T. D., Garcia, H. and Zettl, A., 2007, "Probing Nanoscale Solids at Thermal Extremes," Physical Review Letters Vol. 99, No. 15, p. 155901. https://doi.org/10.1103/PhysRevLett.99.155901
  23. Li, C. Y. and Chou, T. W., 2004, "Modeling of elastic Buckling of Carbon Nanotubes by Molecular Structural Mechanics Approach," Mechanics of Materials Vol. 36, No. 11, pp. 1047-1055. https://doi.org/10.1016/j.mechmat.2003.08.009
  24. Li, C. Y. and Chou, T. W., 2005, "Quantized Molecular Structural Mechanics Modeling for Studying the Specific Heat of Single-Walled Carbon Nanotubes," Physical Review B Vol. 71, No. 7, p. 075409. https://doi.org/10.1103/PhysRevB.71.075409
  25. Weber, R. O., Mercer, G. N., Sidhu, H. S. and Gray, B. F., 1997, "Combustion Waves for Gases (Le=1) and Solids (L->infinity)," Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences Vol. 453, No. 1960, pp. 1105-1118. https://doi.org/10.1098/rspa.1997.0062
  26. Please, C. P., Liu, F. and McElwain, D. L. S., 2003, "Condensed Phase Combustion Travelling Waves with Sequential Exothermic or Endothermic Reactions," Combustion Theory and Modelling Vol. 7, No. 1, pp. 129-143. https://doi.org/10.1088/1364-7830/7/1/307