참고문헌
- Berkes, I. (1995). On the almost sure central limit theorem and domains of attraction, Probability Theory and Related Fields, 102, 1-18. https://doi.org/10.1007/BF01295218
- Berkes, I. and Csaki, E. (2001). A universal result in almost sure central limit theory, Stochastic Processes and their Applications, 94, 105-134. https://doi.org/10.1016/S0304-4149(01)00078-3
- Berkes, I. and Dehling, H. (1993). Some limit theorems in log density, Annals of Probability, 21, 1640-1670. https://doi.org/10.1214/aop/1176989135
- Berkes, I. and Dehling, H. (1994). On the almost sure central limit theorem for random variables with infinite variance, Journal of Theoretical Probability, 7, 667-680. https://doi.org/10.1007/BF02213575
- Billingsley, P. (1968). Convergence of Probability Measures, Wiley, New York.
- Brosamler, G. A. (1988). An almost everywhere central limit theorem, Mathematical Proceedings of the Cambridge Philosophical Society, 104, 561-574.
- Chen, S. and Lin, Z. (2008). Almost sure central limit theorems for functionals of absolutely regular processes with application to U-statistics, Journal of Mathematical Analysis and Applications, 340, 1120-1126. https://doi.org/10.1016/j.jmaa.2007.09.043
- Doukhan, P. and Louhichi, S. (1999). A new weak dependence condition and applications to moment inequalities, Stochastic Processes and their Applications, 84, 313-342. https://doi.org/10.1016/S0304-4149(99)00055-1
- Dudzinski, M. (2003). A note on the almost sure central limit theorem for some dependent random variables, Statistics & Probability Letters, 61, 31-40. https://doi.org/10.1016/S0167-7152(02)00291-2
-
Hwang, E. and Shin, D. W. (2012). Strong consistency of the stationary bootstrap under
${\psi}$ -weak dependence, Statistics & Probability Letters, 82, 488-495. https://doi.org/10.1016/j.spl.2011.12.001 - Lacey, M. P. and Philipp, W. (1990). A note on the almost sure central limit theorem, Statistics & Probability Letters, 9, 201-205. https://doi.org/10.1016/0167-7152(90)90056-D
- Lahiri, S. N. (2003). Resampling Methods for Dependent Data, Springer Series in Statistics, Springer, New York.
- Lesigne, E. (1999). Almost sure central limit theorem for strictly stationary processes, Proceedings of the American Mathematical Society, 128, 1751-1759.
- Matula, P. (1998). On the almost sure central limit theorem for associated random variables, Probability and Mathematical Statistics, 18, 411-416.
- Paparoditis, E. and Politis, D. (2003). Residual-based block bootstrap for unit root testing, Econometrica, 71, 813-855. https://doi.org/10.1111/1468-0262.00427
- Parker, C., Paparoditis, E. and Politis, D. N. (2006). Unit root testing via the stationary bootstrap, Journal of Econometrics, 133, 601-638. https://doi.org/10.1016/j.jeconom.2005.06.008
- Peligrad, M. and Sho, Q. M. (1995). A note on the almost sure central limit theorem for weakly dependent random variables, Statistics & Probability Letters, 22, 131-136. https://doi.org/10.1016/0167-7152(94)00059-H
- Politis, D. N. and Romano, J. P. (1994). The stationary bootstrap, Journal of the American Statistical Association, 89, 1303-1313. https://doi.org/10.1080/01621459.1994.10476870
- Schatte, P. (1988). On strong versions of the central limit theorem, Mathematische Nachrichten, 137, 249-256. https://doi.org/10.1002/mana.19881370117
- Shin, D. W. and Hwang, E. (2013). Stationary bootstrapping for cointegrating regressions, Statistics & Probability Letters, 83, 474-480. https://doi.org/10.1016/j.spl.2012.10.007