DOI QR코드

DOI QR Code

단면감소를 고려한 파이프의 좌굴에 관한 연구

Buckling Analysis of Pipelines with Reduced Cross Section

  • 최동호 (한양대학교 건설환경공학과) ;
  • 고영찬 (한양대학교 건설환경공학과) ;
  • 권순길 (한양대학교 건설환경공학과) ;
  • 이종선 (한양대학교 건설환경공학과)
  • 투고 : 2013.03.11
  • 심사 : 2013.04.23
  • 발행 : 2013.05.30

초록

본 연구에서는 부식이나 보강재가 고려된 비균일한 두께를 가지는 파이프라인에 대하여 일정한 외압을 받을 때의 탄성 좌굴하중을 이론적으로 산정하였다. 길이가 매우 긴 원통형 쉘 구조물인 파이프라인을 단순한 링 구조물로 가정하였고, 고유함수를 유도하여 좌굴 임계하중을 산정하였다. 또한, 두께 변화와 두께가 감소된 구간의 범위에 따른 변수해석을 수행하였다. 이론식에 의해 산정된 좌굴 임계하중 결과를 유한요소해석 결과와 비교하여 검증하였고, 두 결과는 잘 일치함을 알 수 있었다.

This paper proposes a theoretical solution of elastic critical buckling load of infinitely long pipelines with non-uniform thickness under external pressure. The non-uniform cross section of pipelines can be considered as corroded or stiffened pipelines so that this paper can be a fundamental research of pipelines that are essential technology for offshore industries. The theoretical solution of pipelines with non-uniform thickness is derived with an assumption that a cylindrical shell under external pressure can be considered as a simple ring. The eigenfunctions are derived to obtain the critical buckling load. The reduced thickness and the reduced range are considered as variables in parametric analysis. The finite element analysis is performed to verify the theoretical solutions and the results of the analytic method and the finite element method are in good agreement.

키워드

참고문헌

  1. Caruso, S., Dicorrado, S. and Borovik, V. (2003). "Blue stream ready for gas transportation." Proc. of the 22nd World Gas Conference, Tokyo, pp. 1-16.
  2. Hoo Fatt, M. S. (1999). "Elastic-plastic collapse of non-uniform cylindrical shells subjected to uniform external pressure." Thinwalled Structures, Vol. 35, pp. 117-137.
  3. Jensen, H. H.(1988). "Collapse of hydrostatically loaded cylindrical shells." International Journal of Solids Structures, Vol. 24, No. 1, pp. 51-64. https://doi.org/10.1016/0020-7683(88)90098-4
  4. Ko, Y.-C. (2013). Buckling behavior of subsea pipelines of reduced cross section, Master's thesis, Graduate school of Hanyang University (in Korean).
  5. Kyriakides, S. (1986). "Propagation buckles in long confined cylindrical shells." International Journal of Solids Structures, Vol. 22, No. 12. pp. 1579-1597. https://doi.org/10.1016/0020-7683(86)90064-8
  6. Kyriakides, S. and Corona, E. (2007). Mechanics of offshore pipelines, Elsevier, Oxford, U.K.
  7. Lopatin, A. V. and Morozov, E. V. (2012). "Buckling of a composite cantilever circular cylindrical shell subjected to uniform external lateral pressure." Composite Structures, Vol. 94, pp. 553-562. https://doi.org/10.1016/j.compstruct.2011.08.021
  8. Tian, J., Wang, C. M., and Swaddiwudhipong, S. (1999). "Elastic buckling analysis of ring-stiffened cylindrical shells under general pressure loading via the Ritz method." Thin-walled Structures, Vol. 35, pp. 1-24. https://doi.org/10.1016/S0263-8231(99)00012-9
  9. Timoshenko, S. P. and Gere, J. M. (1961). Theory of elastic stability, McGraw Hill, Singapore.
  10. Timoshenko, S. P. and Woinowsky-Krieger, S. (1959). Theory of plates and shells, McGraw Hill.
  11. Xue, J. (2012). "Local buckling in infinitely, long cylindrical shells subjected uniform external pressure." Thin-walled Structures, Vol. 53, pp. 211-216. https://doi.org/10.1016/j.tws.2012.01.008
  12. Xue, J. and Hoo Fatt, M. S. (2002). "Buckling of a non-uniform, long cylindrical shell subjected to external hydrostatic pressure." Engineering Structures, Vol. 24, pp. 1027-1034. https://doi.org/10.1016/S0141-0296(02)00029-9
  13. Xue, J. and Hoo Fatt, M. S. (2005). "Symmetric and anti-symmetric buckle propagation modes in subsea corroded pipelines." Marine Structures, Vol. 18, pp. 43-61. https://doi.org/10.1016/j.marstruc.2005.08.001