DOI QR코드

DOI QR Code

천연고무받침의 열 노화가 교량 내진성능에 미치는 영향

Effects of Thermal Aging of Natural Rubber Bearing on Seismic Performance of Bridges

  • 투고 : 2012.11.29
  • 심사 : 2013.04.26
  • 발행 : 2013.05.30

초록

지진격리장치로서 천연고무받침의 동적 특성은 주재료인 고무의 동적거동과 비선형 성질에 의존하고 있다. 역학적이나 환경적인 영향으로 인해 고무재료에 노화가 진행되고 결국에는 손상이 불가피하게 발생하게 된다. 고무재료의 노화에 주원인은 높은 온도에서 반응열로 인한 산화반응으로 알려져다. 이에 따라 천연고무받침에 대한 가속 열 노화실험을 수행하여 열 노화 전 후에 대해 받침의 특성값을 상호 비교하였다. 실험 결과 열 노화 현상은 전단강성과 에너지 감쇠 그리고 등가감소계수에 영향이 있음을 알 수 있었다. 또한 열 노화에 의한 동적특성의 저하를 실제 교량에 적용하여 천연고무받침의 열 노화가 교량의 내진성능에 미치는 영향을 수치해석을 통해 비교분석하였다. 그 결과 천연고무받침에 대하여 열 노화에 따른 기본 특성변화가 교량의 내진성능에 미치는 영향은 크지 않음을 알 수 있었다.

The dynamic characteristics of natural rubber bearings, which are used as isolator, are dependent on the main rubber's dynamic behaviors and nonlinear properties. Rubber materials tend to undergo an aging process under the influence of mechanical or environmental factors, so they inevitably end up facing damage. A main cause of aging like this is known to be oxidization, which occurs through the heat of reaction at high temperatures. Accordingly, in this study an accelerated thermal aging test was carried out in order to compare the characteristic values of the bearings before and after thermal aging occurs. As a result of this experiment, it was found that a thermal aging phenomenon could have some effects on shear stiffness, energy absorption, and equivalent damping coefficients of the bearings. Furthermore, a deterioration in the dynamic properties of the natural rubber bearings caused by the thermal aging was applied to an actual bridge and then the effects of such thermal aging on the seismic performance of the bridge were also compared and analyzed based on numerical analysis. As a result of this analysis, it was found that the changes in the basic properties of the natural rubber bearings caused by the thermal aging bring only a minor effect on the seismic performance of bridges.

키워드

참고문헌

  1. Park, K. S., Jung, H. J., Kim, W. H., Lee. I. N. (2003). "Aseismic performance evaluation of base isolation systems for bridge." J. of KSCE, KSCE, Vol. 23, No. 3A, pp. 457-460 (in Korean).
  2. Park, S. K., Oh, J. (2012). "Influence of aging of lead rubber bearing on seismic performance of bridges." J. of KSCE, KSCE, Vol. 32, No. 2A, pp.109-116 (in Korean).
  3. Oh, J., Jung, H. Y. (2010). "Effects of accelerated thermal aging on dynamic properties of laminated rubber bearings." J. of KSCE, KSCE, Vol. 30, No. 5A, pp. 417-424 (in Korean).
  4. Oh, J., Hyeun, G. H., Park, Y. S., Park, S. K. (2008). "A study on aseismatic performance of base isolation systems using resilient friction pot bearing." J. of K SMI, KSMI, Vol. 12, No. 1, pp. 127-134 (in Korean).
  5. Oh, J. (2011). An evaluation of physical characteristics and seismic performance of laminated rubber bearings being used in bridges, Ph.D. dissertation, University of Seoul, pp. 150-173 (in Korean).
  6. Cho, W. J., Choi, S. Y., Yu, J. S. (2000). "Basic of rubber engineering." Korea Institute of footwear and leather technology, pp. 233-235 (in Korean).
  7. Jung, G. Y., Ha, D. H., Park, K. N., Kim, D. H. (2002). "Experimental study on characteristics of low hardness rubber bearing." J. of KSCE, KSCE, Vol. 22, No. 6A, pp. 1295-1307 (in Korean).
  8. Han, K. B., Kim, M. G., Park, S. K. (2004). "Improvement of seismic performance of existing bridges using isolation." J. of EESK, EESK, Vol. 8, No. 2, pp. 9-17 (in Korean). https://doi.org/10.5000/EESK.2004.8.2.009
  9. Korea Testing and Research Institute (2011). Performance evaluation test report of Lead Rubber Bearing, Unison e-tech R&D center, pp. 52-54 (in Korean).
  10. Yasaka, A., Mizukoshi K. (1991). "Failure test of laminatsd rubber bearing evaluating effect of shape factor on ultimate behaviourpart 1 restoring force characteristics." Summaries of technical papers of Annual Meeting Architectural Institute of Japan, pp. 599-600 (in Japanese).
  11. Hiroyuki, H., Jiro, Y., Teruchika, K., Shinichi, I. (1989). "The development of nishimatsu construction base isolation system-part 2:experimental study." Report of the Engineering Research Laboratory, Nishimatsu co. ltd, Vol. 12, pp. 34-42 (in Japanese).
  12. Nakamura, T., Okada, H., Seki, M., Sugiyama, K., Teramura A. (1991). "Development of base isolation system for earthquakes and micro-vibrations using laminated thick rubber bearings." (Part 1). Characteristics tests for laminated thick rubber bearings, Report of the Engineering Research Laboratory, Ohbayashi-Gumi, Ltd., No. 42, pp. 15-22 (in Japanese).
  13. Choi, S. S. (2000). "Influence of rubber composition on change of crosslink density of rubber vulcanizates with EV cure system by thermal aging." J. of Applied Polymer Science, Vol. 75, pp. 1378-1384. https://doi.org/10.1002/(SICI)1097-4628(20000314)75:11<1378::AID-APP9>3.0.CO;2-I
  14. Chou, H. W. and Huang J. S. (2008). "Effects of cycle compression and thermal aging on dynmic properties of neoprene rubber bearing." J. of Applied Polymer Science, Vol. 107, pp. 1635-1641. https://doi.org/10.1002/app.26536
  15. Itoh, Y. and Gu, H. S. (2009). "Prediction of aging characteristics in natural rubber bearings used in bridges." J. of Bridge Engineering, ASCE, Vol. 14, No. 2, pp. 122-129. https://doi.org/10.1061/(ASCE)1084-0702(2009)14:2(122)
  16. John J. Fitzgerald, Arthur C. Martellock, Paul L. Nielsen and Robynn V. Schillace. (1992). "The effect of cyclic stress on the physical properties of a poly elastomer." Polymer Engineering & Science, Vol. 32, pp. 1350-1357. https://doi.org/10.1002/pen.760321803
  17. Kato, M., Watanabe Y., Yoneda, G., Tanimoto, E., Hirotani, T., Shirahama, K., Fukushima, Y., Murazumi, Y. (1996). "Investigation of aging effects for laminated rubber bearings of Pelham Bridge." Eleventh World Conference on Earthquake Engineering, Paper No.1450.
  18. Kitahara, T. (2008). "Seismic performance of RC bridge piers considering aging of base isolated rubber." Proceeding of 4th International ASRANet Conference.
  19. Mott, P. H. and Roland, C. M. (2001). "Aging of natural rubber in air and seawater." Rubber Chemistry and Techology, Vol. 74, pp. 79-88. https://doi.org/10.5254/1.3547641
  20. Takafumi Fujita, Katsuhiko Ishida, Toshikazu Yoshizawa, Ichiro Nishikawa, Yoshitaka Muramatsu. (1995). "Study for the prediction of the long-term durability of seismic isolators." Seismic Shock and Vibration Isolation, ASME, Vol. 319, pp. 197-203.
  21. ISO 22762 (2010). Elastomeric seismic protection isolators part-1 : Test Methods.
  22. ISO 22762 (2010). Elastomeric seismic protection isolators part-2 : Applications for bridge- specifications.
  23. AASHTO (2010). Guide specifications for seismic isolation design, Washington D. C.