DOI QR코드

DOI QR Code

Analysis of target classification performances of active sonar returns depending on parameter values of SVM kernel functions

SVM 커널함수의 파라미터 값에 따른 능동소나 표적신호의 식별 성능 분석

  • Received : 2013.02.06
  • Accepted : 2013.02.26
  • Published : 2013.05.31

Abstract

Detection and classification of undersea mines in shallow waters using active sonar returns is a difficult task due to complexity of underwater environment. Support vector machine(SVM) is a binary classifier that is well known to provide a global optimum solution. In this paper, classification experiments of sonar returns from mine-like objects and non-mine-like objects are carried out using the SVM, and classification performance is analyzed and presented with discussions depending on parameter values of SVM kernel functions.

수중 천해 환경에서 능동소나의 반향 신호로 기뢰를 탐지 및 식별하는 일은 복잡한 해양 환경의 영향으로 어려운 문제이다. SVM은 패턴인식 문제에서 최적의 해를 제공하는 이진 분류기이다. 본 논문에서는 SVM을 이용하여 능동소나의 반향 데이터로 기뢰와 같은 금속 물체와 바위를 식별하는 실험을 수행하면서, SVM에 사용되는 커널함수의 파라미터 값의 변화에 따른 식별 성능을 분석하고 제시하였다.

Keywords

References

  1. Paul R. Runkle, Priya K. Bharadwaj, Luise Couchman, and Lawrence Carin, "Hidden Markov models for multiaspect target classification," IEEE Trans. Signal Processing, vol. 47, no. 7, pp. 2035-2040, July 1999. https://doi.org/10.1109/78.771050
  2. Taehwan Kim and Keunsung Bae, "HMM-based underwater target classification with synthesized active sonar signals," IEICE Trans. Fundamentals, vol. E94-A, no. 10, pp. 2039-2042, Oct. 2011. https://doi.org/10.1587/transfun.E94.A.2039
  3. http://archive.ics.uci.edu/ml/index.html
  4. R. P. Gorman and T. J. Sejnowski, "Analysis of hidden units in a layered network trained to classify sonar targets," Neural Networks, vol. 1, pp. 75-89, 1988.
  5. Burcu Erkmen, Tulay Yildrim, "Improving classification performance of sonar targets by applying general regression neural network with PCA," Expert Systems with Applications, vol. 35, no. 1-2, pp.472-475, July-August 2008. https://doi.org/10.1016/j.eswa.2007.07.021
  6. Donghui Li, Azimi-Sadjadi M.R., Robinson M., "Comparison of different classification algorithms for underwater target discrimination," IEEE Transactions on Neural Networks, vol. 15, no. 1, pp. 189-194, Jan. 2004. https://doi.org/10.1109/TNN.2003.820621
  7. V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  8. Chih-Wei Hsu, Chih-Jen Lin, "A Comparison of methods for multiclass support vector machines," Neural Networks, IEEE Transactions on, vol. 13, no. 2, pp. 415-425, March 2002. https://doi.org/10.1109/72.991427
  9. http://ida.first.fraunhofer.de/-anton/software.html

Cited by

  1. 컨볼루션 신경망 기반의 능동소나 표적 식별 vol.21, pp.10, 2013, https://doi.org/10.6109/jkiice.2017.21.10.1909
  2. Underwater Moving Target Classification Using Multilayer Processing of Active Sonar System vol.9, pp.21, 2013, https://doi.org/10.3390/app9214617