Abstract
The frequency bands were discovered which maximize the slopes of autocovariances of speech signals in frequency domain to increase the possibility of segregation between speech signals and background noise signal. A speech signal is divided into blocks which include multiples of sampled data, then those blocks are transformed to frequency domain using Fast Fourier Transform(FFT). To find linear equation by Linear Regression, the coefficients of autocovariance within blocks of some frequency band are used. The slope of the linear equation which is called the slope of autocovariance is varied from band to band according to the characteristics of the speech signal. Using speech signals of a man which consist of 200 files, the coefficients of the slopes of autocovariances are analyzed and compared from band to band.
자기 공분산 기울기를 이용하여 음성 신호와 배경 잡음 신호를 구분할 때 구분 가능성을 높이기 위해 주파수 영역에서 음성 신호의 자기 공분산 기울기를 최대화하는 주파수 대역을 찾아내었다. 디지털 샘플링 된 음성 신호를 일정한 개수의 신호로 이루어진 블록으로 나눈 후 각 블록에 고속푸리에변환(Fast Fourier Transform, FFT)을 하여 주파수 영역으로 변환한 다음 임의의 주파수 대역에서 각 블록에서의 공분산을 구하고 이 공분산 값들을 연결하는 직선 근사를 한 후에 이 직선의 기울기를 자기 공분산 기울기로 사용하는데 이 값은 음성 신호의 특성 상 주파수 대역별로 차이가 있다. 따라서 어느 주파수 대역에서 자기 공분산 기울기가 크게 나타나는지 200개의 남성 음성 파일을 이용하여 주파수 대역별로 비교 분석하였다.