DOI QR코드

DOI QR Code

Modulation of Quorum Sensing in Acyl-homoserine Lactone-Producing or -Degrading Tobacco Plants Leads to Alteration of Induced Systemic Resistance Elicited by the Rhizobacterium Serratia marcescens 90-166

  • Ryu, Choong-Min (Molecular Phytobacteriology Laboratory, Systems and Synthetic Biology Research Center, KRIBB) ;
  • Choi, Hye Kyung (Molecular Phytobacteriology Laboratory, Systems and Synthetic Biology Research Center, KRIBB) ;
  • Lee, Chi-Ho (Department of Biomedicinal Science & Biotechnology, Paichai University) ;
  • Murphy, John F. (Department of Entomology and Plant Pathology, Auburn University) ;
  • Lee, Jung-Kee (Department of Biomedicinal Science & Biotechnology, Paichai University) ;
  • Kloepper, Joseph W. (Department of Entomology and Plant Pathology, Auburn University)
  • 투고 : 2012.11.20
  • 심사 : 2012.12.27
  • 발행 : 2013.06.01

초록

Numerous root-associated bacteria (rhizobacteria) are known to elicit induced systemic resistance (ISR) in plants. Bacterial cell-density-dependent quorum sensing (QS) is thought to be important for ISR. Here, we investigated the role of QS in the ISR elicited by the rhizobacterium, Serratia marcescens strain 90-166, in tobacco. Since S. marcescens 90-166 produces at least three QS signals, QS-mediated ISR in strain 90-166 has been difficult to understand. Therefore, we investigated the ISR capacity of two transgenic tobacco (Nicotiana tabacum) plants that contained either bacterial acylhomoserine lactone-producing (AHL) or -degrading (AiiA) genes in conjunction with S. marcescens 90-166 to induce resistance against bacterial and viral pathogens. Root application of S. marcescens 90-166 increased ISR to the bacterial pathogens, Pectobacterium carotovorum subsp. carotovorum and Pseudomonas syringae pv. tabaci, in AHL plants and decreased ISR in AiiA plants. In contrast, ISR to Cucumber mosaic virus was reduced in AHL plants treated with S. marcescens 90-166 but enhanced in AiiA plants. Taken together, these data indicate that QS-dependent ISR is elicited by S. marcescens 90-166 in a pathogen-dependent manner. This study provides insight into QS-dependent ISR in tobacco elicited by S. marcescens 90-166.

키워드

참고문헌

  1. Audenaert, K., Pattery, T., Cornelis, P. and Hofte, M. 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant-Microbe Interact. 15:1147−1156.
  2. Cho, H. S., Park, S. Y., Ryu, C.-M., Kim, J. F., Kim, J. G. and Park, S. H. 2007. Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS Microbiol. Ecol. 60:14− 23.
  3. Cortes-Barco, A. M., Goodwin, P. H. and Hsiang, T. 2010a. Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol. 59:643−653.
  4. Cortes-Barco, A. M., Hsiang, T. and Goodwin, P. H. 2010b. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or an isoparaffin mixture. Ann. Appl. Biol. 157:179-189. https://doi.org/10.1111/j.1744-7348.2010.00417.x
  5. De Vleesschauwer, D. and Hofte, M. 2009. Rhizobacteria-induced systemic resistance. Adv. Bot. Res. 51:223−281.
  6. Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F. and Zhang, L. H. 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acylhomoserine lactonase. Nature 411: 813−817. https://doi.org/10.1038/35081101
  7. Enebak, S. A. and Carey, W. A. 2000. Evidence for induced systemic protection to fusiform rust in loblolly pine by plant growth-promoting rhizobacteria. Plant Dis. 84:306−308. https://doi.org/10.1094/PDIS.2000.84.3.306
  8. Fray, R. G., Throup, J. P., Wallace, A., Daykin, M., Williams, P., Stewart, G. S. A. B. and Grierson, D. 1999. Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nature Biotechnol. 17:1017−1020.
  9. Fray, R. G. 2002. Altering plant-microbe interaction through artificially manipulating bacterial quorum sensing. Ann. Bot. 89:245−53.
  10. Hahm, M. S., Sumayo, M., Hwang, Y. J., Jeon, S. A., Park, S. J., Lee, J. Y., Ahn, J. H., Kim, B. S., Ryu, C. M. and Ghim, S. Y. 2012. Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions. J. Microbiol. 50:380−385.
  11. Kloepper, J. W., Tuzun, S. and Kuc, J. A. 1992. Proposed definitions related to induced disease resistance. Biocontrol Sci. Technol. 2:349−351.
  12. Kloepper, J. W., Ryu, C.-M. and. Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259−1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  13. Kloepper, J. W. and Ryu, C.-M. 2006. Bacterial endophytes as elicitors of induced systemic resistance. In: Soil Biology, eds. by B. S. Schulz, C. Boyle and T. N. Sieber, Volume 9 Microbial Root Endophytes. pp. 33−52. Berlin Heidelberg: Springer-Verlag. Germany.
  14. Kovacikova, G., Lin, W. and Skorupski, K. 2005. Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetateresponsive LysR-type regulator AlsR in Vibrio Cholerae. Mol. Microbiol. 57:420−433.
  15. Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anolles, G., Rolfe, B. G. and Bauer, W. D. 2003. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl. Acad. Sci. USA 100:1444−1449.
  16. Miller, M. B. and Bassler, B. L. 2001. Quorum sensing in bacteria Annu. Rev. Microbiol. 55:165−199.
  17. Moons, P., Van Houdt, R., Vivijs, B., Michiels, C. M. and Aertsen, A. 2011. Integrated regulation of acetoin fermentation by quorum sensing and pH in Serratia plymuthica RVH1. Appl. Environ. Microbiol. 77: 3422−3427.
  18. Morello, J. E., Pierson, E. A. and Pierson, L. S. 3rd. 2004. Negative cross-communication among wheat rhizosphere bacteria: effect on antibiotic production by the biological control bacterium Pseudomonas aureofaciens 30−84. Appl. Environ. Microbiol. 70:3103−3109.
  19. Murphy, J. F., Reddy, M. S., Ryu, C.-M., Kloepper, J. W. and Li, R. 2003. Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93:1301−1307.
  20. Naylor, M., Murphy, A. M., Berry, J. O. and Carr, J. P. 1998. Salicylic acid can induce resistance to plant virus movement. Mol. Plant-Microbe Interact. 11:860−868.
  21. Niu, D. D., Liu, H. X., Jiang, C. H., Wang, Y. P., Wang, Q. Y., Jin, H. L. and Guo, J. H. 2011. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Mol. Plant-Microbe Interact. 24:533−542.
  22. Pang, Y., Liu, X., Ma, Y., Chernin, L., Berg, G. and Gao, K. 2009. Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur. J. PlantPathol. 124:261−268.
  23. Pierson, L. S. 3rd., Wood, D. W. and Pierson, E. A. 1998. Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu. Rev. Phytopathol. 36:207−25.
  24. Press, C. M., Loper, J. E. and Kloepper, J. W. 2001. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology 91:593−598.
  25. Press, C. M., Wilson, M., Tuzun, S. and Kloepper, J. W. 1997. Salicylic acid produced by Serratia marcescens 90−166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant-Microbe Interact. 10:761−768.
  26. Rao, B., Zhang, L. Y., Sun, J., Su, G., Wei, D., Chu, J., Zhu, J. and Shen, Y. 2012. Characterization and regulation of the 2,3-butanediol pathway in Serratia marcescens. Appl. Microbiol. Biotechnol. 93:2147−2159.
  27. Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S. and Kloepper, J. W. 1996. Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growthpromoting rhizobacteria (PGPR). Plant Dis. 80:891−894. https://doi.org/10.1094/PD-80-0891
  28. Reimmann, C., Ginet, N., Michel, L., Keel, C., Michaux, P., Krishnapillai, V., Zala, M., Heurlier, K., Triandafillu, K., Harms, H., Defago, G. and Haas, D. 2002. Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148:923−932.
  29. Robert-Seilaniantz, A., Grant, M. and Jones, J. D. 2011. Hormone crosstalk in plant disease and defense: more than just jasmonate- salicylate antagonism. Annu. Rev. Phytopathol. 2011: 49:317−43.
  30. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809−1819. https://doi.org/10.1105/tpc.8.10.1809
  31. Ryu, C.-M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Paré, P. W. 2004a. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017−1026.
  32. Ryu, C.-M., Murphy, J. F., Mysore, K. S. and Kloepper, J. W. 2004b. Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic aciddependent signaling pathway. Plant J. 39:381−392.
  33. Schaefer, A. L., Hanzelka, B. L., Parsek, M. R. and Greenberg, E. P. 2000. Detection, purication, and structural elucidation of the acylhomoserine lactone inducer of Vibrio scheri luminescence and other related molecules. Methods Enzymol. 305:288−301. https://doi.org/10.1016/S0076-6879(00)05495-1
  34. Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E. Jr., Rinehart, K. L. and Farrand, S. K. 1997. Detecting and characterizing N-acylhomoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA 94:6036−6041.
  35. Schikora, A., Schenk, S. T., Stein, E., Molitor, A., Zuccaro, A. and Kogel, K. H. 2011. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol. 157:1407−1418. https://doi.org/10.1104/pp.111.180604
  36. Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., Van Breusegem, F., Eberl, L., Hartmann, A. and Langebartels, C. 2006. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactoneproducing rhizosphere bacteria. Plant Cell Environ. 29:909−918. https://doi.org/10.1111/j.1365-3040.2005.01471.x
  37. Teplitski, M., Robinson, J. B. and Bauer, W. D. 2000. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant-Microbe Interact. 13:637−648.
  38. Van Houdt, R., Moons, P., Hueso Buj, M. and Michiels, C. W. 2006. N-acyl-L-homoserine lactone quorum sensing controls butanediol fermentation in Serratia plymuthica RVH1 and Serratia marcescens MG1. J. Bacteriol. 188:4570−4572.
  39. Van Houdt, R., Moons, P., Aertsen, A., Jansen, A., Vanoirbeek, K., Daykin, M., Williams, P. and Michiels, C. W. 2007. Characterization of a luxI/luxR-type quorum sensing system and N-acyl-homoserine lactone-dependent regulation of exoenzyme and antibacterial component production in Serratia plymuthica RVH1. Res. Microbiol. 158:150−158.
  40. Whiteley, M., Lee, K. M. and Greenberg, E. P. 1999. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 96:13904−13909.
  41. Wilson, M., Ezelle, J. E., Press, C. M., Park, K. S., Farrand, S. K., Pierson III, L. S. and Kloepper, J. W. 1997. Autoinducer production in Serratia marcescens 90−166. Phytopathology 87:S103.
  42. Yang, J. W., Yi, H.-S., Kim, H., Lee, B., Lee, S., Ghim, S.-Y. and Ryu, C.-M. 2011. Whitefly infestation elicits defense responses against bacterial pathogens on the leaf and root and belowground dynamic change of microflora in pepper. J. Ecol. 99:46−56.
  43. Zhang, S., Moyne, A.-L., Reddy, M. S. and Kloepper, J. W. 2002. The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol. Control 25:288−296.
  44. Zhang, S., Reddy, M. S. and Kloepper J. W. 2004. Tobacco growth enhancement and blue mold disease protection by rhizobacteria: Relationship between plant growth promotion and systemic disease protection by PGPR strain 90-166. Plant Soil 262:277−288.

피인용 문헌

  1. Against friend and foe: Type 6 effectors in plant-associated bacteria vol.53, pp.3, 2015, https://doi.org/10.1007/s12275-015-5055-y
  2. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants vol.21, pp.3, 2015, https://doi.org/10.5423/RPD.2015.21.3.161
  3. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity vol.90, pp.6, 2016, https://doi.org/10.1007/s11103-015-0344-8
  4. Interkingdom signaling in plant-microbe interactions vol.60, pp.8, 2017, https://doi.org/10.1007/s11427-017-9092-3
  5. Bacterial quorum sensing compounds are important modulators of microbe-plant interactions vol.5, 2014, https://doi.org/10.3389/fpls.2014.00131
  6. Genome Sequence of RhizobacteriumSerratia marcescensStrain 90-166, Which Triggers Induced Systemic Resistance and Plant Growth Promotion vol.3, pp.3, 2015, https://doi.org/10.1128/genomeA.00667-15
  7. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0171534
  8. A perspective on inter-kingdom signaling in plant–beneficial microbe interactions vol.90, pp.6, 2016, https://doi.org/10.1007/s11103-016-0433-3
  9. Microbial homoserine lactones (AHLs) are effectors of root morphological changes in barley vol.253, 2016, https://doi.org/10.1016/j.plantsci.2016.09.014
  10. Association of plant growth-promoting Serratia spp. with the root nodules of chickpea vol.167, pp.6, 2016, https://doi.org/10.1016/j.resmic.2016.04.001
  11. Quorum-Sensing Systems in the Plant Growth-Promoting Bacterium Paraburkholderia phytofirmans PsJN Exhibit Cross-Regulation and Are Involved in Biofilm Formation vol.30, pp.7, 2017, https://doi.org/10.1094/MPMI-01-17-0008-R
  12. Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies vol.25, pp.30, 2018, https://doi.org/10.1007/s11356-017-1152-2
  13. Enhanced expression of ginsenoside biosynthetic genes and in vitro ginsenoside production in elicited Panax sikkimensis (Ban) cell suspensions vol.255, pp.4, 2018, https://doi.org/10.1007/s00709-018-1219-z