DOI QR코드

DOI QR Code

CHOW STABILITY OF CANONICAL GENUS 4 CURVES

  • Kim, Hosung (Department of Mathematics Korea Institute for Advanced Study)
  • Received : 2012.06.19
  • Published : 2013.05.31

Abstract

In this paper, we give sufficient conditions on a canonical genus 4 curve for it to be Chow (semi)stable.

Keywords

Acknowledgement

Supported by : 2010-0020413

References

  1. F. Catanese, M. Franciosi, K. Hulek, and M. Reid, Embeddings of curves and surfaces, Nagoya Math. J. 154 (1999), 185-220. https://doi.org/10.1017/S0027763000025381
  2. S. Casalaina-Martin, D. Jensen, and R. Laza, The geometry of the ball quotient model of the moduli space of genus four curves, In Compact moduli spaces and vector bundles, 107-136, Contemp. Math., 564, Amer. Math. Soc., Providence. RI, 2012. https://doi.org/10.1090/conm/564/11153
  3. P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Etudes Sci. Publ. Math. No. 36 (1969), 75-109.
  4. I. Dolgachev, Lectures on Invariant Theory, London Mathematical Society Lecture Note Series, 296, Cambridge University Press, Cambridge, 2003.
  5. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977.
  6. B. Hassett, Local stable reduction of plane curve singularities, J. Reine Angew. Math. 520 (2000), 169-194.
  7. B. Hassett and D. Hyeon, Log canonical models for the moduli space of curves: the first divisorial contraction, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4471-4489. https://doi.org/10.1090/S0002-9947-09-04819-3
  8. B. Hassett and D. Hyeon, Log minimal program for the moduli space of stable curves: the first flip, Preprint, 2008
  9. B. Hassett, D. Hyeon, and Y. Lee, Stability computation via Grobner basis, J. Korean Math. Soc. 47 (2010), no. 1, 41-62. https://doi.org/10.4134/JKMS.2010.47.1.041
  10. D. Hyeon and Y. Lee, Stability of tri-canonical curves of genus two, Math. Ann. 337 (2007), no. 2, 479-488.
  11. D. Hyeon and Y. Lee, Stability of bicanonical curves of genus three, J. Pure Appl. Algebra 213 (2009), no. 10, 1991-2000. https://doi.org/10.1016/j.jpaa.2009.02.015
  12. D. Hyeon and I. Morrison, Stability of tails and 4-canonical models, Math. Res. Lett. 17 (2010), no. 4, 721-729. https://doi.org/10.4310/MRL.2010.v17.n4.a11
  13. A. Moriwaki, A sharp slope inequality for general stable fibrations of curves, J. Reine Angew. Math. 480 (1996), 177-195.
  14. D. Mumford, Stability of projective varieties, Enseignement Math. (2) 23 (1977), no. 1-2, 39-110.
  15. D. Mumford and J. Fogarty, Geometric Invariant Theory, Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, 34, Springer-Verlag, Berlin, 1982.
  16. D. Schubert, A new compactification of the moduli space of curves, Compositio Math. 78 (1991), no. 3, 297-313.

Cited by

  1. Second Flip in the Hassett–Keel Program: Projectivity 2016, https://doi.org/10.1093/imrn/rnw216