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CHOW STABILITY OF CANONICAL GENUS 4 CURVES

Hosung Kim

Abstract. In this paper, we give sufficient conditions on a canonical
genus 4 curve for it to be Chow (semi)stable.

1. Introduction

A Deligne-Mumford stable curve is a complete connected curve C having
ample dualising sheaf ωC and admitting only nodes as singularities. An n-
canonical curve C ⊂ PN is a Deligne-Mumford stable curve of arithmetic genus
g embedded by the complete linear system |ω⊗n

C | where N = (2n−1)(g−1)−1
if n ≥ 2, and N = g − 1 if n = 1.

Let Chowg,n be the closure of the locus of the Chow forms of n-canonical
curves of arithmetic genus g in the Chow variety of algebraic cycles of dimension
1 and degree 2g−2 in PN . The natural action of SLN+1 on PN induces an action
on Chowg,n. Denote the corresponding GIT (Geometric Invariant Theory)
quotient space by Chowg,n//SLN+1. To understand this quotient space as a
parameter space of curves with some geometric properties, we need to find
Chow stability conditions.

Mumford showed that, for n ≥ 5 and g ≥ 2, the Chow stable curves are pre-
cisely Deligne-Mumford stable curves and there is no strictly Chow semistable
curve (cf. [14]). This implies that the quotient space is precisely the moduli
space of Deligne-Mumford stable curves M4.

The cases when n = 3 and g ≥ 3 were concerned by Schubert in [16]. He
proved that a 3-canonical curve of genus g ≥ 3 is Chow stable if and only if it is
pseudo-stable and also showed that there is no strictly Chow semistable curve,
and thus the quotient space is the moduli space of pseudo-stable curves M

ps

g .
A pseudo-stable curve is a complete connected curve C satisfying the following
properties.

• ωC is ample,
• it admits at worst nodes and ordinary cusps as singularities, and
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• it has no elliptic components meeting the rest at one point.

Hyeon and Lee proved that, when n = 3 and g = 2, the pseudo-stable curves are
indeed Chow semistable and completely classified the strictly Chow semistable
points in [10]. They also concerned the case n = 2 and g = 3. Hassett and
Hyeon studied for the case when n = 2 and g ≥ 4 in [8] and the cases when
n = 4 and general g were studied by Hyeon and Morrison in [12].

The purpose of this paper is to study the cases when n = 1 and g = 4. More
precisely, we want to give sufficient conditions on a canonical genus 4 curve for
it to be Chow stable or semistable. To do this, we use the Hilbert-Mumford
criterion (cf. Theorem 2.2). Our main results are presented in Section 3.2.
We show that any irreducible curve in Chow4,1 with mild singularities is Chow
stable (cf. Theorem 3.8). For reducible curves, we prove that a general curve
in Chow4,1 with two irreducible components is Chow stable except when it is
a union of two elliptic curves meeting at three points (cf. Theorems 3.10 and
3.11).

After appearing the preliminary version of this paper, Casalaina-Martin,
Jensen, and Laza (cf. [2], Theorem 3.1) classified Chow stable and semistable
points in Chow4,1 by using the GIT analysis for cubic threefolds. Our results
are partial but we make a direct computation of the stability conditions on
Chow4,1.

Throughout this paper, we use the following notations and conventions.

– We work over an algebraically closed field k of characteristic zero.
– A curve is a connected, complete scheme of pure dimension 1.
– For a curve C, the genus g(C) of C is its arithmetic genus and we write
ωC for its dualising sheaf.

– We say that a point p ∈ C is a singular point of type An if

ÔC,p ≃ k[[x, y]]/(y2 − xn+1).

In particular, a node (resp. ordinary cusp) is a singular point of type
A1 (resp. A2).

– For a polynomial P (m) of degree n in m, we denote by n.l.c.P (m) for
the coefficient of 1

n!m
n in P (m).

2. Chow stability and canonical embedding

In this section, we review some basic facts for Chow stability.

2.1. Chow stability

A weighted flag F of Pn consists of a choice of coordinates X0, . . . , Xn of Pn

and a sequence of integers r0 ≥ · · · ≥ rn = 0.
Let F be a weighted flag of Pn as above andX be a variety in Pn of dimension

r. Let α : X̃ → X be a proper birational morphism. Let us define an ideal
sheaf I(X) of OX̃×A1 by

I(X) · [α∗OX(1)⊗OA1 ] = the subsheaf generated by triXi, i = 1, . . . , n.
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It is well known that χ(OX̃×A1(m)/I(X)mOX̃×A1(m)) is a polynomial of degree
r + 1 for m ≫ 0 (cf. [14], Proposition 2.1). Define

eF (X) := n.l.c. χ(OX̃×A1(m)/I(X)mOX̃×A1(m)).

Lemma 5.6 in [14] shows that eF (X) does not depend on α.
For a Chow cycle X =

∑

aiYi where Yi are subvarieties of Pn of dimension
r and ai are nonnegative integer, define

eF (X) :=
∑

aieF (Yi).

Definition 2.1. The natural action of SLn+1 on P
n induces an action on

the Chow variety of Pn. We say that a Chow cycle X in Pn is Chow stable
(resp. semistable, unstable) if its Chow from is GIT stable (resp. semistable,
unstable) under the action of SLn+1 on the Chow variety of Pn.

The following theorem is the Hilbert-Mumford criterion which is very useful
to determine GIT stability.

Theorem 2.2 ([15], Theorem 2.1). Let X be a Chow cycle of dimension r in

Pn. Then X is Chow semistable (resp. Chow stable) if and only if

eF (X)−
r + 1

n+ 1
degX

∑

ri ≤ 0 (resp. < 0)

for any weighted flag F of Pn.

2.2. Criterions for Chow stability

We now review some methods for determining Chow stability. For more
detail, we refer to [14, 15, 16].

Let Li ⊂ P
n be the linear subspace defined by Xi = · · · = Xn = 0 and let

PLi
: Pn − Li → Pn−i be the natural projection along Li.

Definition 2.3. Let C ⊂ Pn be an irreducible reduced curve in Pn with C 6⊂
Li. Let αLi

: C̃ → Pn−i be the morphism extending the composition of PLi

and the normalization α : C̃ → C. Define

degPLi
(C) :=

{

(degαLi
)(degαLi

(C̃)) if αLi
(C̃) is a curve

0 otherwise

and

ei = eFi (C) := degC − degPLi
(C).

For a Chow cycle C =
∑

ajCj where Cj is a 1 dimensional subvariety of Pn

and ai are nonnegative integer, assume that Cj 6⊂ Li for all j. Define

ei = eFi (C) :=
∑

aje
F
i (Cj).

From the definition, e0 = 0 and en = degC if C 6⊂ Ln.
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Proposition 2.4 ([14], Corollary 4.11). Let C ⊂ Pn be a curve such that each

irreducible component of C does not contained in Ln. Then, for any sequence

0 = s0 < · · · < sl = n, it is satisfied that

eF (C) ≤
l−1
∑

i=0

(rsi − rsi+1
)(esi + esi+1

).

Let C be an irreducible reduced curve in Pn and let α : C̃ → C be the
normalization of C. Pick a point p in C̃ and let s and t be generators of the
maximal ideals of OC̃,p and OA1,0, respectively. For the natural valuation vp on

OC̃,p, set ordpXi := vp(α
∗Xi). Recall that I(C) be the ideal sheaf of OC̃×A1

defined by

I(C) · [α∗OC(1)⊗OA1 ] = the subsheaf generated by triα∗Xi, i = 1, . . . , n.

For each p ∈ C̃, I(C)p×{0} ⊂ OC̃×A1,p×{0} is generated by

tr0sordpX0 , tr1sordpX1 , . . . , trnsordpXn ,

where sordpXi = 0 if ordpXi = ∞. Let us use the notation

I(C)p×{0} = (tr0sordpX0 , tr1sordpX1 , . . . , trnsordpXn).

Definition 2.5. In the situation above, suppose that there is an i with ri = 0
and C 6⊂ (Xi = 0). For each point p in C̃, we define

eF (C̃)p := n.l.c. dimk(OC̃×A1,p×{0}/I(C)mp×{0}).

Remark 2.6. In the setting of Definition 2.5, the quotient sheaf OC̃×A1/I(C)
is supported at the points over C ∩ Ln because rn = 0. Therefore

eF (C) = n.l.c.χ(OC̃×A1(m)/I(C)mOC̃×A1(m))

=
∑

α(p)∈Ln

dimk(OC̃×A1,p×{0}/I(C)mp×{0})

=
∑

α(p)∈Ln

eF (C̃)p.

Lemma 2.7 ([16], Lemma 1.4). In the situation of Definition 2.5, set vi :=

ordpXi. If vi + ri ≥ a for all i = 0, . . . , n, then eF (C̃)p ≥ a2.

2.3. Canonical curves

Definition 2.8. We say that a curve C is honestly hyperelliptic if there is a
morphism C → P1 of degree 2, and is honestly non-hyperelliptic if it is not
honestly hyperelliptic.

A Gorenstein curve is a curve C with ωC
∼= OC(KC) for a Cartier divisorKC .

A generically Gorenstein curve is a curve C such that ωC is locally isomorphic
to OC outside a finite set.
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Theorem 2.9 ([1], Theorem 3.6). Let C be a numerically 3-connected Goren-

stein curve. That is, for any generically Gorenstein strict subcurve D ⊂ C,

degOD(KC)− degωD ≥ 3.

Then either C is honestly hyperelliptic or KC is very ample.

If C is a numerically 3-connected curve admitting nodal singularities only,
then Theorem 2.9 implies that any irreducible component of C has at least
three intersection points with the union of the other components.

Definition 2.10. A canonical curve is a numerically 3-connected honestly non-
hyperelliptic Gorenstein genus g curve C ⊂ Pg−1 whose embedding is given by
|ωC |.

We remark that any canonical curve C ⊂ Pg−1 is a nondegenerate curve of
degree 2g − 2.

3. Canonical curves of genus four

From now on, F is a weighted flag of P3 associated with coordinates X0, . . .,
X3 and weights r0 ≥ · · · ≥ r3 = 0, and Li is the linear subspace of P3 defined
by Xi = · · · = X3 = 0.

Note that any canonical genus 4 curve in P3 has degree 6. Thus applying
Theorem 2.2 we get that a canonical genus 4 curve C ⊂ P3 is Chow stable
(resp. semistable) if and only if

eF (C) < (resp. ≤)3
∑

ri

for any weighted flag F .

3.1. Upper bounds of eF (C)

In this subsection, we gather some preliminary results which will be used to
give upper bounds of eF (C) in the next subsection.

Lemma 3.1. Let C ⊂ P
3 be a curve of degree d, and let ei be the same as

that in Definition 2.3. Assume that each irreducible component of C does not

contained in Ln. Then

eF (C) ≤ min{dr0, e1r0 + dr1, e2r0 + dr2, e1r0 + e2r1 + (d− e1)r2}.

Proof. The lemma immediately comes by applying Proposition 2.4 to the se-
quences 0 < 3, 0 < 1 < 3, 0 < 2 < 3 and 0 < 1 < 2 < 3. �

Lemma 3.2. Let R := k[s, t] and I an ideal of R.

(1) If I = (ta, sb) for integers a, b ≥ 1, then n.l.c.dimkR/Im = ab.
(2) If I = (ta, tpsq, sb) for integers a, b, p, q ≥ 1, then

n.l.c.dimkR/Im ≤ aq + bp.
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Proof. If I = (ta, sb), then Im is generated by

{tan1+r1sbn2+r2 |n1 + n2 ≥ m, 0 ≤ r1 < a, 0 ≤ r2 < b}.

Thus the following set of monomials

{sbi+ktj | 0 ≤ i ≤ m− 1, 0 ≤ j ≤ a(m− i)− 1, 0 ≤ k ≤ b− 1}

forms a basis of R/Im. Therefore

dimkR/Im =

m−1
∑

i=0

a(m− i)b = ab(m2 +m)/2,

which implies (1). Similarly, (2) can be proved by describing the set of the
monomials spanning R/Im. �

Lemma 3.3. Let C ⊂ P
3 be a curve of degree d, and assume that each irre-

ducible component of C does not lie in the hyperplane L3. Then

eF (C) ≤ (
∑

α(p)=L1

ordpX3)r0 + (
∑

α(p)∈L2−L1

ordpX3)r1 + (
∑

α(p)/∈L2

ordpX3)r2.

Proof. We may assume that C is irreducible and reduced. Let α : C̃ → C be
the normalization of C. Take a point p in C̃ and set vi = ordpXi. Then

I(C)p×{0} = (tr0sv0 , tr1sv1 , tr2sv2 , sv3).

From this, it is induced that

I(C)p×{0} >











(tr0 , sv3), for all p

(tr1 , sv3), if α(p) 6= L1

(tr2 , sv3), if α(p) 6∈ L2.

Applying Lemma 3.1 to these inclusions, we obtain that

eF (C̃)p ≤











r0v3, for all p

r1v3, if α(p) 6= L1

r2v3, if α(p) 6∈ L2.

Using the equality eF (C) =
∑

p∈C̃ eF (C̃)p, the desired inequality can be veri-
fied. �

Lemma 3.4. Let C ⊂ P3 be a reduced irreducible curve of degree d and assume

that C ⊂ L3 and C 6= L2. Then

eF (C) ≤ (
∑

α(p)=L1

ordpX3)r0 + (
∑

α(p) 6=L1

ordpXi)r1 + dr2.

Proof. Let α : C̃ → C be the normalization of C. Let F ′ be the weighted
flag of L3

∼=P2 associated with the coordinates X ′
0 := X0|L3

, X ′
1 := X1|L3

,
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X ′
2 := X2|L3

and the weights r′0 = r0 − r2 ≥ r′1 = r1 − r2 ≥ r′2 = 0. From the
proof of Theorem 2.9 in [14] it is induced that

eF (C) = eF ′(C) + 2dr2.

Take a point p ∈ C̃ ∩ (X ′
2 = 0) and set vi := ordpα

∗Xi. Then

eF ′(C̃)p ≤

{

r′0v2, for all p

r′1v2, if α(p) 6= L1.

The first inequality is given by applying from Lemma 3.2 to the inclusion

I(C)p×{0} = (tr
′

0sv0 , tr
′

1sv1 , sv2) > (tr
′

0 , sv2).

If α(p) 6= L1, then v1 = 0, and hence we get the next inclusion

I(C)p×{0} > (tr
′

1 , sv2)

which implies the second inequality by Lemma 3.2. From the equality eF ′(C) =
∑

p∈C̃ eF ′(C̃)p, we get the lemma. �

Lemma 3.5. If C ⊂ P3 is equal to L2, then eF (C) = r0 + r1.

Proof. The coordinate ring of C is R = k[X0, X1]. Let I = (X0t
r0 , X1t

r1).
Applying Lemma 1.3 in [16], we get that

eF (C) = n.l.c.dimk(R[t]/Im)m.

Since Im is generated by

{tr0i+r1jX i
0X

j
1 |i+ j = m},

we get that

dimk(R[t]/Im)m =
∑

i+j=m

r0i+ r1j =

m
∑

i=0

r0i+ r1(m− i)

=
m
∑

i=0

i(r0 − r1) +mr1

=
m(m+ 1)

2
(r0 − r1) +m(m+ 1)r1

=
r0 + r1

2
(m2 +m),

and thus the required equality is obtained. �

3.2. Main results

Next proposition says that Chow stable curves admit at worst double points.

Proposition 3.6. Let C ⊂ P3 be a curve of degree 6. If C admits a singular

point of multiplicity ≥ 3, then it is not Chow stable. Furthermore, if C has a

point of multiplicity ≥ 4, then it is not Chow semistable.
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Proof. Let p be a point of C with multiplicity bigger than or equal to 3. Take
coordinates X0,. . . ,X3 so that X1, X2, and X3 vanish at p, and let r0 = 1, r1 =
r2 = r3 = 0. For the associated weighted flag F , it follows that

Ip×{0}(C) = (t,mp)OC×A1,p×{0}

which is the maximal ideal of OC×A1,p×{0} where mp is the maximal ideal of
OC,p. Hence

eF (C) = eF (C)p = multp×{0}(C × A
1) = multpC ≥ 3 = 3

∑

ri.

Furthermore, the last inequality is strict if multpC ≥ 4. �

The next proposition will be used in the proof of the following theorems.

Proposition 3.7. Let C ⊂ P3 be an honestly non-hyperelliptic curve of degree

6 in the sense of Definition 2.8, and assume that each irreducible component

of C does not contained in Ln. Suppose that e1 ≤ 2 and e2 ≤ 4 where ei be the

same as that in Definition 2.3. Then C is Chow stable with respect to F .

Proof. From Lemma 3.1, it follows that

eF (C) ≤ min{6r0, 2r0 + 6r1, 4r0 + 6r2, 2r0 + 4r1 + 4r2}.

If the right hand side in the above inequality is greater than or equal to 3
∑

ri
simultaneously, then it should be satisfied that

6r0 = 2r0 + 6r1 = 4r0 + 6r2 = 2r0 + 4r1 + 4r2 = 3
∑

ri

which implies that eF (C) ≤ 3
∑

ri, and the equality eF (C) = 3
∑

ri holds only
when r0 = 3r, r1 = 2r, r2 = r for some r ∈ Z>0, and e2 = 2, e4 = 4.

We now assume that r0 = 3r, r1 = 2r and r2 = r for some r ∈ Z>0, and
e1 = 2 and e4 = 4. If C meets L3 at a point not equal to L1, then

eF (C) ≤ 5r0 + r1 = 17r < 3
∑

ri

by Lemma 3.3. On the other hand, if C intersects L3 only at L1, then the
restricted projection morphism PL2

|C∩(P3−L2) extends to a morphism C →

P
1 of degree 2 because e2 = 4 and the assumption that C ∩ L3 consists of

only one point L1. This gives a contradiction because C is honestly non-
hyperelliptic. �

Our next result shows that any irreducible canonical curve admitting only
mild singularities is Chow stable.

Theorem 3.8. Let C ⊂ P3 be an irreducible canonical curve of genus 4 ad-

mitting at worst An, n ≤ 4, singularities. Then C is Chow stable.

Proof. From the assumptions, it is induced that C admits at most double
points, and is nondegenerate. Thus it follows that e1 ≤ 2 and e2 ≤ 5. Via
Proposition 3.7, it is enough to show that e2 6= 5. Suppose not. The compo-
sition of the partial normalization morphism C̃ → C at the points in C ∩ L2
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and the restricted projection morphism PL2
|C∩(P3−L2) induces an isomorphism

C̃ → P1. This shows that C has exactly two double points P and Q of type
A3 or A4, and L2 meets C at P , Q and another point. Let us denote by H the
plane determined by L2 and the tangent line of C at P . Then the number of
intersection points of H and C is greater than or equal to 7 with multiplicity,
a contradiction. �

The next theorem deals with double twisted curves in P3 which are the
canonical images of smooth hyperelliptic curves of genus 4.

Theorem 3.9. Let C ⊂ P3 be a double curve supported on a twisted cubic

curve. Then C is Chow semistable but not stable. Moreover, all such curves

are identified in Chow4,1//SL4.

Proof. Let C = 2C1 where C1 is the twisted cubic curve in P3. Then e1 ≤ 1
and e2 ≤ 2 for C1, and thus eF (C) = 2eF (C1) is less than or equal to 4r0+6r2
and 2r0 +6r1 by Lemma 3.1. On the other hand, the two values 4r0 +6r2 and
2r0 +6r1 cannot be bigger than 3

∑

ri simultaneously, which implies that C is
Chow semistable.

Take a point p in C1, and choose coordinates X0, . . . , X3 so that X1, X2, X3

vanish at p, X2, X3 vanish to order ≥ 2 at p, and X3 vanishes to order ≥ 3 at
p. Set r0 = 3, r1 = 2, r2 = 1, r3 = 0. For the corresponding weighted flag F , it
is obtained that

eF (C) = 2eF (C1) ≥ 2eF (C1)p ≥ 2 · 9 = 3
∑

ri

by Lemma 2.7, and thus C is not Chow stable.
The last statement comes from the fact that any two twisted cubic curves

are projective equivalent. �

Let δi,j ⊂ Chow4,1 be the closure of the locus parametrizing canonical curves
consisting of two smooth components meeting at nodes and having genus i and
j respectively. Let C be a curve in δi,j with two smooth irreducible components
C1 and C2 meeting at r nodes. Then r ≥ 3 by the remark after Theorem 2.9.
Moreover

g(C) = g(C1) + g(C2) + r − 1 = i + j + r − 1 = 4.

Thus the only nontrivial cases are δ1,1, δ2,0, δ1,0 and δ0,0.
Throughout Theorems 3.10 and 3.11, we will show that a general curve in

each δi,j is Chow stable except when it belongs to a class in δ1,1.

Theorem 3.10. If C ⊂ P3 is a general curve in δ1,1, then it is Chow semistable

but not Chow stable. Furthermore, all Chow semistable curves in δ1,1 are iden-

tified in Chow4,1//SL4.

Proof. Without loss of generality, we may assume that C is a union of two
smooth elliptic curves C1 and C2 meeting at three nodes denoted by p1, p2 and
p3. Note that each Ci is contained in a hyperplane denoted by Hi, and has
degree 3.
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If L2 is not contained in any Hi, then e1 ≤ 2 and e2 ≤ 4 which implies that
eF (C) ≤ 3

∑

ri by Proposition 3.7, and thus we may assume that L2 ⊂ H2.
If H2 is not equal to L3, then

eF (C) = eF (C1) + eF (C2) ≤

{

(r0 + 2r1) + (r0 + 2r1), if L2 = H1 ∩H2

(r0 + 2r2) + (r0 + 3r1), if L2 6= H1 ∩H2

which implies that eF (C) ≤ 3
∑

ri.
Now assume that H2 = L3. Then it is easy to check that

eF (C) = eF (C1) + eF (C2) ≤

{

(r0 + 2r1) + (r0 + 2r1 + 3r2), if L2=H1 ∩H2

(r0 + 2r2) + (r0 + 2r1 + 3r2), if L2 6=H1 ∩H2

which yields that eF (C)≤ 3
∑

ri. Finally we showed that C is Chow semistable.
Choose coordinates X0,. . . , X3 so that H1 and H2 are hyperplanes defined

by X2 = 0 and X3 = 0 respectively. Set r0 = r1 = r and r2 = 0. Then for each
i it follows that

eF (Ci) = eF (Ci)p1
+ eF (Ci)p2

+ eF (Ci)p3
= r + r + r = 3r

and thus

eF (C) = eF (C1) + eF (C2) = 6r = 3
∑

ri.

This shows that C is not Chow stable.
Now it remains to show the last statement of the theorem. Choose coordi-

nates X0,. . . ,X3 of P3 so that C is defined by

X0X
2
2 +X0X

2
3 −X1(X1 − aX0)(X1 − bX0) = 0 and X2X3 = 0,

where 1, a and b are distinct where X0,. . . ,X3 is a homogeneous coordinates
on P3. Note that general curve satisfying the assumptions in the proposition
can be defined in this way if we choose suitable coordinates.

Consider the one parameter subgroup λ : Gm → GL4 defined by

λ(t)X0 = tX0, λ(t)X1 = tX1, λ(t)X2 = X2, and λ(t)X3 = X3.

Let C̄ be the limit of C as t → ∞ under the action λ. Applying the computation
in [9], it follows that C̄ is given by

X1(X1 − aX0)(X1 − bX0) = 0 and X2X3 = 0.

We note that C̄ is a union of C̄1 and C̄2 satisfying

(a) each C̄i is contained in Hi,
(b) C̄1 = L1,1 ∪ L1,2 ∪ L1,3 and C̄2 = L2,1 ∪ L2,2 ∪ L2,3 where each Li,j is

a line,
(c) Li,1, Li,2 and Li,3 intersect at one point qi for each i = 1, 2, and
(d) L1,j and L2,j meet at a point pj .

From Section 11.3 in [4], it is induced that C̄ is Chow semistable. Note that
any two curves satisfying (a)∼(d) are projectively equivalent which yields the
last statement in the theorem. �
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Theorem 3.11. If C ⊂ P3 is a general curve in δ2,0, δ1,0, or δ0,0, then it is

Chow stable.

Proof. Without loss of generality, we may assume that C is a canonical curve
consisting of two smooth components C1 and C2 meeting at nodes. It is easy to
check that e1 ≤ 2 and e2 ≤ 4 for any weighted flag F . Therefore by Proposition
3.7, we can also assume that C2 is contained in L3.

If C belongs to a class in δ0,0, then C1 and C2 are twisted cubic curves by
Fig. 18 in p. 354 [5], and thus they are nondegenerate, a contradiction.

Assume that C belongs to a class in δ1,0. From Fig. 18 in p. 354 [5], we
obtain that degC1 = 4 and degC2 = 2. We note that the intersection C1 ∩C2

consists of four distinct nodes of C and C2 ⊂ L3. Therefore the points in
C1 ∩L3 are exactly the same as that in C1 ∩C2. Hence in C1 ∩L3, there exist
at least two points not lying on L2, and at least three points not equal to L1,
which implies that eF (C1) ≤ r0 + r1 + 2r2 by Lemma 3.3. Applying Lemma
3.4, it is induced that eF (C2) ≤ 2r0 + 2r2. Therefore

eF (C) = eF (C1) + eF (C2) ≤ 3r0 + r1 + 4r2 ≤ 3
∑

ri.

In the last inequality, the equality holds if and only if r1 = r2 = 0. In the case
when r1 = r2 = 0, it is induced that

eF (C) = eF (C1) + eF (C2) = eF (C1)p + eF (C2)p ≤ 2r < 3
∑

ri,

where p is the point on which X1, X2 and X3 vanish.
The cases when C belongs to a class in δ2,0 can be proved by similar argu-

ments. �
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