DOI QR코드

DOI QR Code

APPROXIMATING FIXED POINTS OF NONEXPANSIVE TYPE MAPPINGS IN BANACH SPACES WITHOUT UNIFORM CONVEXITY

  • Sahu, Daya Ram (Department of Mathematics Banaras Hindu University) ;
  • Khan, Abdul Rahim (Department of Mathematics and Statistics King Fahd University of Petroleum and Minerals) ;
  • Kang, Shin Min (Department of Mathematics and RINS Gyeongsang National University)
  • 투고 : 2012.06.05
  • 발행 : 2013.05.31

초록

Approximate fixed point property problem for Mann iteration sequence of a nonexpansive mapping has been resolved on a Banach space independent of uniform (strict) convexity by Ishikawa [Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976), 65-71]. In this paper, we solve this problem for a class of mappings wider than the class of asymptotically nonexpansive mappings on an arbitrary normed space. Our results generalize and extend several known results.

키워드

참고문헌

  1. R. P. Agarwal, D. O'Regan, and D. R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Topological Fixed Point Theory and Its Applications 6, Springer, New York, 2009.
  2. R. P. Agarwal, D. O'Regan, and D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (2007), no. 1, 61-79.
  3. S. C. Bose, Weak convergence to the fixed point of an asymptotically nonexpansive map, Proc. Amer. Math. Soc. 68 (1978), no. 3, 305-308. https://doi.org/10.1090/S0002-9939-1978-0493543-4
  4. S. S. Chang, On the approximation problem of fixed points for asymptotically nonexpansive mappings, Indian J. Pure Appl. Math. 32 (2001), no. 9, 1297-1307.
  5. L. Deng, Convergence of the Ishikawa iteration process for nonexpansive mappings, J. Math. Anal. Appl. 199 (1996), no. 3, 769-775. https://doi.org/10.1006/jmaa.1996.0174
  6. M. Edelstein, A remark on a theorem of Krasnosel'skii, Amer. Math. Monthly 73 (1966), no. 5, 509-510. https://doi.org/10.2307/2315474
  7. H. Fukhar-ud-din and A. R. Khan, Approximating common fixed points of asymptotically nonexpansive maps in uniformly convex Banach spaces, Comput. Math. Appl. 53 (2007), no. 9, 1349-1360. https://doi.org/10.1016/j.camwa.2007.01.008
  8. K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), no. 1, 171-174. https://doi.org/10.1090/S0002-9939-1972-0298500-3
  9. S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), no. 1, 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
  10. S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976), no. 1, 65-71. https://doi.org/10.1090/S0002-9939-1976-0412909-X
  11. A. R. Khan and M. A. Ahmed, Convergence of a general iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces and applications, Comput. Math. Appl. 59 (2010), no. 8, 2990-2995. https://doi.org/10.1016/j.camwa.2010.02.017
  12. A. R. Khan, A. A. Domlo, and H. Fukharuddin, Common fixed points Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 341 (2008), no. 1, 1-11. https://doi.org/10.1016/j.jmaa.2007.06.051
  13. A. R. Khan, H. Fukharuddin and A. A. Domlo, Approximating fixed points of some maps in uniformly convex metric spaces, Fixed Point Theory Appl. 2010 (2010), Art. ID 385986, 11 pages.
  14. T. H. Kim and H. K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005), no. 1-2, 51-60. https://doi.org/10.1016/j.na.2004.11.011
  15. M. A. Krasnosel'skii, Two remarks on the method of successive approximations, Uspehi Mat. Nauk 10 (1955), no. 1, 123-127.
  16. T. C. Lim and H. Xu, Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Anal. 22 (1994), no. 11, 1345-1355. https://doi.org/10.1016/0362-546X(94)90116-3
  17. Z. Liu and S. M. Kang, Weak and strong convergence for fixed points of asymptotically nonexpansive mappings, Acta Math. Sin. (Engl. Ser.) 20 (2004), no. 6, 1009-1018. https://doi.org/10.1007/s10114-004-0321-7
  18. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), no. 3, 506-610. https://doi.org/10.1090/S0002-9939-1953-0054846-3
  19. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), no. 4, 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
  20. M. O. Osilike and S. C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Modelling 32 (2000), no. 10, 1181-1191. https://doi.org/10.1016/S0895-7177(00)00199-0
  21. S. Reich, Constructive techniques for accretive and monotone operators, Applied non-linear analysis (Proc. Third Internat. Conf., Univ. Texas, Arlington, Tex., 1978), pp. 335-345, Academic Press, New York-London, 1979.
  22. B. E. Rhoades, Fixed point iterations for certain nonlinear mappings, J. Math. Anal. Appl. 183 (1994), no. 1, 118-120. https://doi.org/10.1006/jmaa.1994.1135
  23. D. R. Sahu, Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory 12 (2011), no. 1, 187-204.
  24. D. R. Sahu, Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces, Comment. Math. Univ. Carolin. 46 (2005), no. 4, 653-666.
  25. D. R. Sahu and I. Beg, Weak and strong convergence for fixed points of nearly asymptotically non-expansive mappings, Int. J. Mod. Math. 3 (2008), no. 2, 135-151.
  26. H. Schaefer, Uber die methode sukzessiver Approximationen, Jber. Deutch. Math. Verein 59 (1957), no. 1, 131-140.
  27. J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mapping, J. Math. Anal. Appl. 159 (1991), no. 2, 407-413.
  28. J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), no. 1, 153-159. https://doi.org/10.1017/S0004972700028884
  29. K. K. Tan and H. K. Xu, Fixed point iteration process for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122 (1994), no. 3, 733-739. https://doi.org/10.1090/S0002-9939-1994-1203993-5
  30. H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), no. 1, 279-291. https://doi.org/10.1016/j.jmaa.2004.04.059