References
-
S. Y. A. Chang, J. M. Wilson, and T. H. Wolf, Some weighted norm inequalities conce
${\mathbb{R}}^n$ ing the Schrodinger operators, Comment. Math. Helv. 60 (1985), no. 2, 217-246. https://doi.org/10.1007/BF02567411 - L. I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510. https://doi.org/10.1090/S0002-9939-1972-0312232-4
- R. Kerman and E. T. Sawyer, The trace inequality and eigenvalue estimate for Schrodinger operators, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 207-228.
- P. G. Lemarie-Rieusset and S. Gala, Multipliers between Sobolev spaces and fractional differentiation, J. Math. Anal. Appl. 322 (2006), no. 2, 1030-1054. https://doi.org/10.1016/j.jmaa.2005.07.043
- V. G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1985.
- V. G. Maz'ya and T. Schaposnikova, Theory of Multipliers in Spaces of Differentiable Functions, Pitnam, 1985.
- V. G. Maz'ya and I. E. Verbitsky, Capacitary inequalities for fractional integrals with applications to partial differential equations and Sobolev multipliers, Ark. Mat. 33 (1995), no. 1, 81-115. https://doi.org/10.1007/BF02559606
- V. G. Maz'ya and I. E. Verbitsky, The Schrodinger operator on the energy space: boundedness and compactness criteria, Acta Math. 188 (2002), no. 2, 263-302. https://doi.org/10.1007/BF02392684
- V. G. Maz'ya and I. E. Verbitsky, The form boundedness criterion for the relativistic Schrodinger operator, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 2, 317-339. https://doi.org/10.5802/aif.2020
-
T. Miyakawa, On
$L^1$ -stability of stationary Navier-Stokes flows in${\mathbb{R}}^n$ , J. Math. Sci. Univ. Tokyo 4 (1997), no. 1, 67-119. - M. Schechter, The spectrum of the Schrodinger operator, Trans. Amer. Math. Soc. 312 (1989), no. 1, 115-128.
- E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.
- E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc. 67 (1961), 102-104. https://doi.org/10.1090/S0002-9904-1961-10517-X
- E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, New Jersey, 1993.
- R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060.