DOI QR코드

DOI QR Code

CHARACTERIZATION OF THE MULTIPLIERS FROM Ḣr TO Ḣ-r

  • Gala, Sadek (Department of Mathematics University of mostaganem) ;
  • Sawano, Yoshihiro (Department of Mathematics and Information Sciences Tokyo Metropolitan University)
  • Received : 2012.04.13
  • Published : 2013.05.31

Abstract

In this paper, we will provide an alternative proof to characterize the pointwise multipliers which maps a Sobolev space $\dot{H}^r(\mathb{R}^d)$ to its dual $\dot{H}^{-r}(\mathb{R}^d)$ in the case 0 < $r$ < $\frac{d}{2}$ by a simple application of the definition of fractional Sobolev space. The proof relies on a method introduced by Maz'ya-Verbitsky [9] to prove the same result.

Keywords

References

  1. S. Y. A. Chang, J. M. Wilson, and T. H. Wolf, Some weighted norm inequalities conce${\mathbb{R}}^n$ing the Schrodinger operators, Comment. Math. Helv. 60 (1985), no. 2, 217-246. https://doi.org/10.1007/BF02567411
  2. L. I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510. https://doi.org/10.1090/S0002-9939-1972-0312232-4
  3. R. Kerman and E. T. Sawyer, The trace inequality and eigenvalue estimate for Schrodinger operators, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 207-228.
  4. P. G. Lemarie-Rieusset and S. Gala, Multipliers between Sobolev spaces and fractional differentiation, J. Math. Anal. Appl. 322 (2006), no. 2, 1030-1054. https://doi.org/10.1016/j.jmaa.2005.07.043
  5. V. G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1985.
  6. V. G. Maz'ya and T. Schaposnikova, Theory of Multipliers in Spaces of Differentiable Functions, Pitnam, 1985.
  7. V. G. Maz'ya and I. E. Verbitsky, Capacitary inequalities for fractional integrals with applications to partial differential equations and Sobolev multipliers, Ark. Mat. 33 (1995), no. 1, 81-115. https://doi.org/10.1007/BF02559606
  8. V. G. Maz'ya and I. E. Verbitsky, The Schrodinger operator on the energy space: boundedness and compactness criteria, Acta Math. 188 (2002), no. 2, 263-302. https://doi.org/10.1007/BF02392684
  9. V. G. Maz'ya and I. E. Verbitsky, The form boundedness criterion for the relativistic Schrodinger operator, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 2, 317-339. https://doi.org/10.5802/aif.2020
  10. T. Miyakawa, On $L^1$-stability of stationary Navier-Stokes flows in ${\mathbb{R}}^n$, J. Math. Sci. Univ. Tokyo 4 (1997), no. 1, 67-119.
  11. M. Schechter, The spectrum of the Schrodinger operator, Trans. Amer. Math. Soc. 312 (1989), no. 1, 115-128.
  12. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.
  13. E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc. 67 (1961), 102-104. https://doi.org/10.1090/S0002-9904-1961-10517-X
  14. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, New Jersey, 1993.
  15. R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060.