References
- S. P. Dirkse and M. C. Ferris, MCPLIB: A collection of nonlinear mixed complementarity problems, Optim. Methods Software 5 (1995), 319-345. https://doi.org/10.1080/10556789508805619
- M. E. EL-Hawary, Optimal Power Flow: Solution Techniques, Requirement and Challenges, IEEE Service Center, Piscataway, NJ, 1996.
- J. Y. Fan, Convergence rate of the trust region method for nonlinear equations under local error bound condition, Comput. Optim. Appl. 34 (2006), no. 2, 215-227. https://doi.org/10.1007/s10589-005-3078-8
- J. Y. Fan and J. Y. Pan, An improved trust region algorithm for nonlinear equations, Comput. Optim. Appl. 48 (2011), no. 1, 59-70. https://doi.org/10.1007/s10589-009-9236-7
- J. Y. Fan and Y. X. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption, Computing 74 (2005), no. 1, 23-39. https://doi.org/10.1007/s00607-004-0083-1
- D. R. Han, A hybrid entropic proximal decomposition method with self-adaptive strategy for solving variational inequality problems, Comput. Math. Appl. 55 (2008), no. 1, 101-115. https://doi.org/10.1016/j.camwa.2007.03.015
- Y. R. He, A new double projection algorithm for variational inequalities, J. Comput. Appl. Math. 185 (2006), no. 1, 166-173. https://doi.org/10.1016/j.cam.2005.01.031
- S. Karamardian, Complementarity problems over cones with monotone and pseudomonotone maps, J. Optim. Theory Appl. 18 (1976), no. 4, 445-454. https://doi.org/10.1007/BF00932654
- F. M. Ma and C.W.Wang, Modified projection method for solving a system of monotone equations with convex constraints, J. Appl. Math. Comput. 34 (2010), no. 1-2, 47-56. https://doi.org/10.1007/s12190-009-0305-y
- K. Meintjes and A. P. Morgan, A methodology for solving chemical equilibrium system, Appl. Math. Comput. 22 (1987), no. 4, 333-361. https://doi.org/10.1016/0096-3003(87)90076-2
- B. T. Polyak, Introduction to Optimization, Optimization Software Inc., Publications Division, New York, 1987(Translated from Russian, with a foreword by Dimitri P. Bertsekas).
- M. V. Solodov and B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, In: Fukushima M., Qi L. (eds) Reformulation: piecewise smooth, semismooth and smoothing methods. Kluwer, Holanda (1998), 355-369.
- X. J. Tong and L. Qi, On the convergence of a trust-region method for solving constrained nonlinear equations with degenerate solution, J. Optim. Theory Appl. 123 (2004), no. 1, 187-211. https://doi.org/10.1023/B:JOTA.0000043997.42194.dc
- C. W. Wang and Y. J. Wang, A superlinearly convergent projection method for constrained systems of nonlinear equations, J. Global Optim. 44 (2009), no. 2, 283-296. https://doi.org/10.1007/s10898-008-9324-8
- C. W. Wang, Y. J. Wang, and C. L. Xu, A projection method for a system of nonlinear monotone equations with convex constraints, Math. Methods Oper. Res. 66 (2007), no. 1, 33-46. https://doi.org/10.1007/s00186-006-0140-y
- A. J. Wood and B. F. Wollenberg, Power Generations, Operations, and Control, Wiley, New York, 1996.
- N. Xiu and J. Zhang, Some recent advances in projection-type methods for variational inequalities, J. Comput. Appl. Math. 152 (2003), no. 1-2, 559-585. https://doi.org/10.1016/S0377-0427(02)00730-6
- E. H. Zarantonello, Projections on Convex Sets in Hilbert Spaces and Spectral Theory, Academic Press, New York, 1971.
- J. L. Zhang and Y. Wang, A new trust region method for nonlinear equations, Math. Methods Oper. Res. 58 (2003), no. 2, 283-298. https://doi.org/10.1007/s001860300302
Cited by
- A modified Hestenes–Stiefel projection method for constrained nonlinear equations and its linear convergence rate vol.49, pp.1-2, 2015, https://doi.org/10.1007/s12190-014-0829-7
- A Globally Convergent Matrix-Free Method for Constrained Equations and Its Linear Convergence Rate vol.2014, 2014, https://doi.org/10.1155/2014/386030
- Wei–Yao–Liu conjugate gradient projection algorithm for nonlinear monotone equations with convex constraints vol.92, pp.11, 2015, https://doi.org/10.1080/00207160.2014.977879
- A family of conjugate gradient methods for large-scale nonlinear equations vol.2017, pp.1, 2017, https://doi.org/10.1186/s13660-017-1510-0
- Two spectral gradient projection methods for constrained equations and their linear convergence rate vol.2015, pp.1, 2015, https://doi.org/10.1186/s13660-014-0525-z
- Three derivative-free projection methods for nonlinear equations with convex constraints vol.47, pp.1-2, 2015, https://doi.org/10.1007/s12190-014-0774-5